Featured Research

from universities, journals, and other organizations

Northwestern Researcher Develops Molecular Method To Improve Plastics

Date:
March 31, 2000
Source:
Northwestern University
Summary:
A research team led by Northwestern University materials scientist Samuel I. Stupp has developed a novel method to improve polymers that could impact not only the plastics industry, but fields as diverse as optical communications, medicine and nanotechnology.

SAN FRANCISCO - A research team led by Northwestern University materials scientist Samuel I. Stupp has developed a novel method to improve polymers that could impact not only the plastics industry, but fields as diverse as optical communications, medicine and nanotechnology.

This new method improves polymers by changing the actual organization of the macromolecules using small molecules as additives, rather than changing a polymer's chemical structure as catalysts do.

Stupp, Board of Trustees Professor of Materials Science, Chemistry and Medicine, will present a paper outlining these findings at the 219th American Chemical Society National Meeting in San Francisco at 1 p.m., U.S. Pacific Time, Thursday, March 30.

"Companies are interested in improving mechanical, thermal, transport, flow and other properties of polymers," said Stupp. "To achieve this, they've focused most of their research dollars on the chemistry of catalysts used to make polymers, but this will have limited results. We are using molecular self-assembly to physically change polymers ‹ a completely different direction that holds a great deal of promise."

The researchers have discovered a system of molecules that when dissolved in a liquid monomer, such as styrene, form nanoribbons, reminiscent of DNA strands. Molecules freeze around the ribbons in an orderly fashion, completely changing the physical nature of the liquid monomer and creating a gel with a blue-violet hue, which appears like a liquid crystal when viewed in a microscope. Strikingly, the structural changes are retained when the liquid monomer is polymerized into a solid, such as polystyrene.

Today's polystyrene ‹ used for such common items as food packaging, compact disc jewel boxes, appliances, television cabinets and toys ‹ is inexpensive but has limited toughness. "When manufacturers need increased toughness and stiffness or other special properties, they have to turn to more expensive plastic, such as engineering plastics or liquid crystal polymers," said Stupp. His modified version holds the promise of sophisticated properties at an inexpensive price.

One of the advantages of Stupp's method is the orientation of polymer molecules in the material by a nano-sized and stiff scaffold, formed by self-assembling molecules, in the material's interior. It is well known that polymeric materials are strong along the covalent axis of their molecules because a great deal of energy is required to break covalent bonds, says Stupp. The nanoribbons orient easily along a desired direction and drag the polymer chains around them. Therefore, the method has enormous potential for producing extremely strong polymers without requiring the complex equipment currently necessary to make ultra-strong fibers.

The researchers found that when minute amounts of designed molecules, which they call dendron rodcoils, are dissolved in monomers, the molecules interact with one another, forming weak bonds and assembling into ribbon-like structures. These tiny ribbons ‹ hundreds of nanometers long but only 10 nanometers wide and a few nanometers thick ‹ are scattered throughout the monomer. (By contrast, a human hair is approximately 10,000 nanometers wide.) The final solid polymer contains 108 meters of nanoribbon per cm3, but the ribbons are so thin that they account for only one percent or less of the weight of the entire material.

"The critical next step was to see how the polymerization process, which requires heating the styrene, would affect the self-assembled ribbons," said Stupp. "Would solid polystyrene, the material used in thousands of everyday items, exhibit the same structural properties as the liquid styrene? The answer was a resounding yes."

In the presence of the ribbons, polymer chains line up neatly alongside them. Without the rigid ribbons to guide them, polymer molecules are amorphous coils, resembling a jumbled pile of cooked spaghetti, with chains heading in all directions.

Another advantage of Stupp's method is that the presence of the ribbons also changes polystyrene's optical properties dramatically. The polystyrene becomes strongly birefringent, a property that could be exploited to move light in specific directions. The modified polystyrene also can reflect and transmit certain wavelengths of light. These optical properties are mediated by the nanoribbons, so the material used to make cheap plastic parts also could become a material for advanced photonics.

"Molecular self-assembly has changed the structure of polystyrene completely," said Stupp. "And it doesn't involve searching for new catalysts."

Stupp's team next plans to investigate the mechanical and flow properties in the modified polystyrene, as well as the use of the self-assembled ribbons in other polymers. "We can modify many different materials, and we already know we can modify monomers that polymerize into rubbers with this method," said Stupp. "But the properties exhibited by each may differ." They also will look at using the ribbons in biology for medical purposes, to create structures that direct cells to travel in a certain direction, for example.

The research was funded by the U.S. Army Research Office, the National Science Foundation, the Department of Energy and the Office of Naval Research.

Stupp's research collaborators are postdoctoral researcher Eugene R. Zubarev and graduate student Martin U. Pralle, both of the University of Illinois at Urbana-Champaign, and graduate student Eli D. Sone of Northwestern.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Northwestern Researcher Develops Molecular Method To Improve Plastics." ScienceDaily. ScienceDaily, 31 March 2000. <www.sciencedaily.com/releases/2000/03/000331083341.htm>.
Northwestern University. (2000, March 31). Northwestern Researcher Develops Molecular Method To Improve Plastics. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2000/03/000331083341.htm
Northwestern University. "Northwestern Researcher Develops Molecular Method To Improve Plastics." ScienceDaily. www.sciencedaily.com/releases/2000/03/000331083341.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins