Featured Research

from universities, journals, and other organizations

Anticipating Devices Of The Future: Study Predicts Unique Properties Of Silicon Nanowires Just A Few Atoms In Diameter

Date:
September 29, 2000
Source:
Georgia Institute Of Technology
Summary:
Large-scale simulations of silicon nanowires just several atoms in diameter have given device designers new clues about how these nanometer-scale devices will one day perform. The work provides a basis for anticipating how the quantum mechanical effects that dominate behavior of materials at this size scale will alter the operation of future generations of electronic devices.

Large-scale simulations of silicon nanowires just several atoms in diameter have given device designers new clues about how these nanometer-scale devices will one day perform. The work provides a basis for anticipating how the quantum mechanical effects that dominate behavior of materials at this size scale will alter the operation of future generations of electronic devices.

Writing in the August 28 issue of Physical Review Letters, Uzi Landman, Robert Barnett and Andrew Scherbakov from the Georgia Institute of Technology, and Phaedon Avouris from the IBM T.J. Watson Research Center, report on a number of issues pertaining to the atomic structure, electronic properties and electrical transport in silicon nanowires that will have to be considered by designers using devices this small.

"It's a much-discussed expectation that devices of this size will be different, but in what ways and by how much, remained unknown," said Uzi Landman, Regents' Professor of Physics and director of the Georgia Tech Center for Computational Materials Science. "In this study, we have explored certain unique properties of systems this small through first-principles quantum mechanical simulations. Such simulations, which are to the best of our knowledge the largest ones to date, are essential for gaining reliable and predictive information about these systems. They were enabled by a combination of improved methodologies and the availability of high-powered computers."

To boost speed and reduce energy use, engineers are being pushed to make electronic devices smaller and to pack more of them onto a chip. This pressure will eventually drive them to use features as small as one nanometer (one-billionth of a meter, or a hundred-thousandth the width of a human hair). When that happens, he noted, device operation will be dominated by quantum mechanical effects -- and the expectations that have long governed device design will no longer apply.

The researchers simulated silicon nanowires etched from bulk silicon, or self-assembled from clusters containing 24 atoms of silicon. In each case, the silicon was passivated by attaching hydrogen atoms to unused bonds, and the wires were connected to aluminum leads.

The theoretical simulations produced data on the nanowires' electrical conductance, the influence of the silicon-metal interface and the role that doping with aluminum atoms may play in changing materials properties. The work also suggests new ways of doping ultra-small transistor channels that could circumvent some current technological issues.

"This work attempts to fill in some of the gaps in our knowledge in this area," said Dr. Phaedon Avouris, manager of Nanometer Scale Science & Technology for IBM's Research Division at the T.J. Watson Research Center in Yorktown Heights, N.Y. "While the wires on which we report here are significantly smaller than those likely to be used in the near future, they are particularly useful because they tell us what to expect in the fully quantum mechanical limit -- the ultimate miniaturization limit. The calculations have revealed a number of significant changes in important properties."

Carried out on an IBM SP-2 computer at Georgia Tech, the simulations revealed that:

o Electronic states formed from a combination of orbitals from the aluminum leads and the silicon wire atoms penetrate all the way through nanowires of less than about one nanometer in length, giving such silicon bridges a finite conductance. But in longer structures, these electronic states penetrate only partially into the nanowire, with the silicon retaining its semiconducting properties.

o The transfer of electrons from the aluminum to the silicon at the junction between the two materials creates a localized dipole which forms a barrier to the flow of electrons. The simulations show that the height of such Schottky barriers at nanoscale metal-to-semiconductor contacts may not be too different from those found at more familiar size scales.

"The height of the barrier depends on the nature of bonding and atomic arrangement at the contact itself and varies for the various configurations of nanowires that we studied between being 40 to 90 percent larger than the value found at the corresponding macroscale contact," said Landman. "This is good news because it means that device engineers won't have to apply dangerously large voltages across the barrier formed at nanoscale metal-to-silicon contacts, as some researchers had suspected."

o The simulations suggest a way that could overcome some of the anticipated problems involved in doping the silicon used in devices this small. Doping of semiconductors is used routinely in order to tune and optimize device characteristics. However, in nanoscale devices one may expect detrimentally large device-to-device statistical variations of the dopant concentration. This variability could cause severe problems at this size scale because electronics designers may not consistently predict the performance of a collection of such devices.

However, the simulations suggest that building nanowires from silicon clusters could offer a solution. Because the clusters form hollow cages, much like carbon fullerenes, they could be fabricated around a dopant atom. With each cluster then containing a dopant atom, device consistency may be achieved.

o The wave-like nature of the electrons could cause interference effects in the electric conductance through the silicon nanowires used as current channels. When voltage is applied to open the channel, electrons penetrating the silicon nanowire from one of the aluminum leads may bounce off the contact to the other lead and flow back toward the source contact. Upon reaching that contact, they may bounce off again, and the process may repeat itself.

This behavior results, at certain electron wavelengths and wire configurations, in interference resonances that cause the channel to appear transparent, leading to the occurrence of spikes in the current flowing through the nanoscale channel.

"When building a device, engineers would have to take this into account and either find ways to use it or avoid it," Landman added. "In macroscopic devices, this phenomenon is of no particular consequence, showing again that small devices are different in ways that go beyond simple scaling with size."

The next step is to actually fabricate and test devices this small. The research was sponsored by the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by Georgia Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute Of Technology. "Anticipating Devices Of The Future: Study Predicts Unique Properties Of Silicon Nanowires Just A Few Atoms In Diameter." ScienceDaily. ScienceDaily, 29 September 2000. <www.sciencedaily.com/releases/2000/09/000921071439.htm>.
Georgia Institute Of Technology. (2000, September 29). Anticipating Devices Of The Future: Study Predicts Unique Properties Of Silicon Nanowires Just A Few Atoms In Diameter. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2000/09/000921071439.htm
Georgia Institute Of Technology. "Anticipating Devices Of The Future: Study Predicts Unique Properties Of Silicon Nanowires Just A Few Atoms In Diameter." ScienceDaily. www.sciencedaily.com/releases/2000/09/000921071439.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins