Featured Research

from universities, journals, and other organizations

Mountain-Front Reservoirs Control Cycles Of Great Salt Lake

Date:
November 14, 2000
Source:
Penn State
Summary:
Major cycles in the size and depth of Utah's Great Salt Lake are known from as far back as the 19th century, but now a Penn State researcher suggests an explanation for the seemingly odd behavior of the lake.

Reno, Nev. -- Major cycles in the size and depth of Utah's Great Salt Lake are known from as far back as the 19th century, but now a Penn State researcher suggests an explanation for the seemingly odd behavior of the lake.

"In the 1980s, the Great Salt Lake was very high," said Dr. Christopher J. Duffy, associate professor of civil and environmental engineering. "Twenty years earlier, in the 1960s, the lake was so low that there was talk of it drying up."

It appears that the long-term fluctuations of the Great Salt Lake do not directly match the fluctuations of the rainfall and snowfall, since rain and snow in the Wasatch Mountains move rapidly downhill to the lake each season.

However, the Great Salt Lake rises and falls over time scales of decades. According to Duffy, to explain how the mountain-front stores the water, is to explain the cycles in the lake.

"At the highest part of the Wasatch Mountains, runoff from rain and snow forms perennial streams with little storage underground and rapid downhill movement," Duffy told attendees today (Nov.13) at the annual meeting of the Geological Society of America in Reno, Nev.

The middle and lower parts of the mountain slope occupy what hydrologists call the "losing stream zone." This is where topology and geology interfere with simple gravity-driven runoff.

When streams cross the losing stream zone, the fractured bedrock and deep alluvial deposits can store significant amounts of water, carrying stream water underground into deep reservoirs. These groundwater reservoirs have a long residence time before the water re-emerges and flows into the lake.

"The huge underground reservoir smooths out the seasonal variations of climate signal, leaving only the long-term cycles, on an approximate 11- to 22-year period," says Duffy. A second groundwater effect that enhances the long-term cycles of the lake has to do with the fluctuating position of the water table relative to the stream level. High water table conditions limit the storage of stream low by groundwater and flooding may result. Low water table conditions allow the groundwater reservoir to temporarily store part of the flood. During drought years, even large amounts of rain may not cause an increase in lake levels until the underground reservoirs are fully recharged.

"The long cycle of filling and draining mountain-front aquifers is in response to very weak cycles in the climate record, where groundwater acts as a noise filter and amplifier," says Duffy.

The Penn State researcher has developed a dynamical model of this behavior, which seems to explain how low-frequency cycles dominate the Great Salt Lake level. He hopes to look at the tree ring data, a record of rainfall and the water table, to correlate with his findings.

###

Further information is available at http//www.cee.psu.edu/dynsys/


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Mountain-Front Reservoirs Control Cycles Of Great Salt Lake." ScienceDaily. ScienceDaily, 14 November 2000. <www.sciencedaily.com/releases/2000/11/001113234955.htm>.
Penn State. (2000, November 14). Mountain-Front Reservoirs Control Cycles Of Great Salt Lake. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2000/11/001113234955.htm
Penn State. "Mountain-Front Reservoirs Control Cycles Of Great Salt Lake." ScienceDaily. www.sciencedaily.com/releases/2000/11/001113234955.htm (accessed August 22, 2014).

Share This




More Earth & Climate News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

California Drought Stings Honeybees, Beekeepers

California Drought Stings Honeybees, Beekeepers

AP (Aug. 21, 2014) — California's record drought is hurting honey supplies and raising prices for consumers. The lack of rainfall means fewer crops and wildflowers that provide the nectar bees need to make honey. (Aug. 21) Video provided by AP
Powered by NewsLook.com
Thousands Of Species Found In Lake Under Antarctic Ice

Thousands Of Species Found In Lake Under Antarctic Ice

Newsy (Aug. 20, 2014) — A U.S. team found nearly 4,000 species in a subglacial lake that hasn't seen sunlight in millennia, showing life can thrive even under the ice. Video provided by Newsy
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) — Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins