Featured Research

from universities, journals, and other organizations

Study Shows That Purely Vertical Strain Assumption Not Valid During Aquifer Testing

Date:
November 29, 2000
Source:
Virginia Tech
Summary:
The assumption, held for over half a century, that purely vertical strain used in the definition of the storage coefficient in aquifers is not valid, a study at Virginia Tech shows.

BLACKSBURG, VA. — The assumption, held for over half a century, that purely vertical strain used in the definition of the storage coefficient in aquifers is not valid, a study at Virginia Tech shows. Since the analytical work of Theis and Jacob over half a century ago, scientists have used only vertical strain to measure storage in aquifers, ignoring what is going on in the horizontal direction, said Thomas J. Burbey of Virginia Tech's Department of Geological Sciences in the College of Arts and Sciences. Water is released from aquifers in two ways, Burbey said—through aquifer compression or compaction and through the release of pressure that allows the water to expand, much as air expands in a tire when the valve is released.

Burbey said that the aquifer compression or compaction of water is occurring in a horizontal as well as vertical direction, leading to the release of water from storage. For his study, Burbey used numerical models that take into consideration only vertical strains, then wrote a model for three-dimensional strain, including horizontal, and compared the results with those using the vertical strain only.

He found that water release occurs due to horizontal compression, not just vertical. While his studies show that calculated hydraulic head values, or water levels, and the production of water in terms of volume strain are nearly identical for both models, he also discovered that, over time, the location of the maximum production, or place from which water is pumped, moves outward, horizontally, from the well. Burbey found, also, that when the model incorporates the horizontal strain, more than half of the water, and up to 70 percent, originates from horizontal strain and that the percentage of water pumped from horizontal strain increases over time.

Finally, Burbey found that producing the same quantity of water using just one dimension requires much more compaction, or land subsidence, to accommodate the volume of water pumped out.

"Results indicate that small changes in porosity resulting from horizontal strain can yield extremely large quantities of water to the pumping well," Burbey wrote. "This study suggests that the assumption of purely vertical strain used in the definition of the storage coefficient is not valid."

Burbey presented his findings at the Geological Society of American meeting in Reno in November.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "Study Shows That Purely Vertical Strain Assumption Not Valid During Aquifer Testing." ScienceDaily. ScienceDaily, 29 November 2000. <www.sciencedaily.com/releases/2000/11/001129075102.htm>.
Virginia Tech. (2000, November 29). Study Shows That Purely Vertical Strain Assumption Not Valid During Aquifer Testing. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2000/11/001129075102.htm
Virginia Tech. "Study Shows That Purely Vertical Strain Assumption Not Valid During Aquifer Testing." ScienceDaily. www.sciencedaily.com/releases/2000/11/001129075102.htm (accessed September 22, 2014).

Share This



More Earth & Climate News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

AFP (Sep. 22, 2014) Celebrities, political leaders and the masses rallied in New York and across the globe demanding urgent action on climate change, with organizers saying 600,000 people hit the streets. Duration: 01:19 Video provided by AFP
Powered by NewsLook.com
French FM Urges 'powerful' Response to Global Warming

French FM Urges 'powerful' Response to Global Warming

AFP (Sep. 22, 2014) French Foreign Minister Laurent Fabius on Monday warned about the potential "catastrophe" if global warming was not dealt with in a "powerful" way. Duration: 01:08 Video provided by AFP
Powered by NewsLook.com
Ongoing Drought, Fighting Put Somalia at Risk of Famine

Ongoing Drought, Fighting Put Somalia at Risk of Famine

AFP (Sep. 22, 2014) After a year of poor rains and heavy fighting Somalia is again at risk of famine, just three years after food shortages killed 260,000 people. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins