Featured Research

from universities, journals, and other organizations

Yale Researcher Finds New Clue To What Blocks Nerve Fibers From Regrowing Following Spinal Cord Injury Or Disease

Date:
January 22, 2001
Source:
Yale University
Summary:
Researchers are one step closer to reversing brain and spinal cord injuries with the discovery of another molecule in a pathway that prevents axon regeneration, a Yale researcher says.

New Haven, Conn. – Researchers are one step closer to reversing brain and spinal cord injuries with the discovery of another molecule in a pathway that prevents axon regeneration, a Yale researcher says.

Stephen Strittmatter, M.D., who holds the Vincent Coates Chair of neurology, as well as associate professor of neurology and neurobiology at Yale School of Medicine, said he and his collaborators have now identified the receptor responsible for inhibiting the growth of injured nerve fibers in the brain and spinal cord by the protein, Nogo.

The finding could lead to the reversal of functional deficits in brain and spinal cord injuries caused by trauma and stroke, or brought about by degenerative diseases, such as multiple sclerosis.

"We had the key and now we have the lock," said Strittmatter, whose study was published this week in the journal Nature. "The importance of the discovery is that by having both the ligand and the receptor molecules in hand, it greatly simplifies the search for inhibitors of that interaction and for therapeutic possibilities."

Strittmatter and his collaborators a year ago published a study identifying the Nogo protein as one important and selective blocker of axon regeneration in the brain after central nervous system injury. Axons are the telephone lines of the nervous system, carrying a nerve impulse to a target cell.

"Once we had Nogo in hand, we needed to know: How does it function? How does it inhibit axon growth? We needed to identify the molecular mechanism of Nogo action," he said.

What the researchers found is a receptor on the axons to which the Nogo protein binds. It is this receptor, Strittmatter said, that inhibits the axon’s regenerative growth.

"The current identification of a receptor mediating Nogo-66 action should greatly facilitate the development of agents with pharmaceutical potential in a diverse group of neurological conditions, such as spinal cord injury, brain trauma, stroke affecting white matter, and chronic, progressive multiple sclerosis," he said.

Collaborators on the study were Alyson Fournier, postdoctoral research fellow, and Tadzia GrandPre, graduate student.


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Cite This Page:

Yale University. "Yale Researcher Finds New Clue To What Blocks Nerve Fibers From Regrowing Following Spinal Cord Injury Or Disease." ScienceDaily. ScienceDaily, 22 January 2001. <www.sciencedaily.com/releases/2001/01/010119080446.htm>.
Yale University. (2001, January 22). Yale Researcher Finds New Clue To What Blocks Nerve Fibers From Regrowing Following Spinal Cord Injury Or Disease. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2001/01/010119080446.htm
Yale University. "Yale Researcher Finds New Clue To What Blocks Nerve Fibers From Regrowing Following Spinal Cord Injury Or Disease." ScienceDaily. www.sciencedaily.com/releases/2001/01/010119080446.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins