Featured Research

from universities, journals, and other organizations

Mouse Gene Trap Helps Decipher Brain's Wiring Diagram

Date:
March 8, 2001
Source:
NIH/National Institute Of Mental Health
Summary:
Researchers funded by the National Institute of Mental Health (NIMH) have perfected a way to discover the wiring diagram of the mammalian brain. The technique, a type of gene trap, provides a shortcut for identifying - from among the tangled trillions of neural connections -- just the machinery involved in wiring up the brain during early development.

Researchers funded by the National Institute of Mental Health (NIMH) have perfected a way to discover the wiring diagram of the mammalian brain. The technique, a type of gene trap, provides a shortcut for identifying - from among the tangled trillions of neural connections -- just the machinery involved in wiring up the brain during early development. NIMH grantee Marc Tessier-Lavigne, Ph.D., Howard Hughes Medical Institute (HHMI), and University of California, San Francisco (UCSF), and collaborator William Skarnes, Ph.D., University of California, Berkeley (UC Berkeley), and colleagues, report on the first mammalian in vivo discoveries using the technique in the March 8, 2001 Nature.

The researchers bill the new technique, called a PLAP secretory trap screen, as a tool for finding a needle in a haystack. The trick: attach a molecular tag to the needle. Through the magic of genetic engineering, lines of mice are bred to express telltale mutations. Brain neurons harboring particular wiring molecules are revealed by a blue tint, while their tentacle-like extensions, or axons, are colored purple.

Intricate guidance mechanisms have evolved to insure that the brain gets wired up correctly during critical periods in early development. Mistakes in this process, resulting in circuitry gone awry, are hypothesized to occur in neurodevelopmental disorders like schizophrenia and autism. Like ships wending their way to distant ports, embryonic neurons migrate to their appointed destinations in the brain and spinal column with help from navigation systems in their axons. Axons establish connections, or synapses, with remote target cells, networking some 100 billion neurons in humans. Growth cones at the axon tip steer a weaving course, taking their cues from chemical attractants and repellents secreted by guidance cells that serve as the lighthouses and buoys of central nervous system development. Receptor proteins on the axons act as the growth cones' antennae for receiving these signals. Researchers face a daunting task in identifying such axon guidance system components and the genes that code for them, thought to number in the hundreds or thousands.

"There's such complexity, and many of the standard methods, such as chemically inducing a mutation or molecularly knocking out a single gene, take too long," explained Tessier-Lavigne. "In addition, wiring defects can be very difficult to detect against a background of normal projections." In the same time it takes to perform a single gene knockout study, gene traps might net dozens or hundreds of genes. However, due to randomness integral to the methodology, it's not possible to target a particular molecule in advance.

"It starts out as somewhat of a 'fishing expedition,' but ultimately yields an invaluable molecular map of axonal projections by simultaneously mutating genes of interest and labeling the neurons expressing them," added Skarnes. The two laboratories are participating in an effort to develop a bank of mutant mouse lines - accessible at www.genetrap.org -- expressing particular populations of labeled axons as a resource for the neuroscience community.

In the current study, Tessier-Lavigne, Skarnes and colleagues demonstrated, for the first time in vivo, an axon guidance role for a repellent guidance chemical, Sema6A, and clarified the guidance function of a growth cone receptor, EphA4. They inserted into mouse embryonic stem cells a marker, called a "secretory trap" vector, initially developed by Skarnes, that creates a mutation in genes likely to code for axon guidance molecules. To make the resultant subtle wiring defects stand out against a background of normal axonal projections, they added to the vector a second marker, PLAP (human placental alkaline phosphatase). They then used the genetically modified stem cells to breed lines of mice expressing the marker, which, after chemical staining, turns neuron cell bodies blue and axons purple.

As expected, some PLAP-labeled axons had different projection patterns in animals with the mutation, when compared with normal animals. Of 120 known genes trapped, 13 are thought to play a role in neuronal guidance, and the researchers predict that at least a comparable proportion of new genes netted in future studies likely will similarly code for brain wiring proteins. The technique "makes it possible not only to develop a map of the normal wiring pattern of the brain, but also to screen systematically for changes in this map in mutant animals," note the researchers. They have observed "remarkable diversity" of axonal projection patterns among some 40 lines of mice produced to date. In lines where the mutations do not interfere with the animals' survival, the researchers hope to screen for defects in behaviors, such as learning and memory, stress responses, etc. that might reflect underlying defects in the brain that might be traceable to specific genes. The technique's "full impact will come from its application on a large scale to sample as much of the genome as possible," write the researchers.

Also participating in the study were: Philip Leighton, Kevin Mitchell, Lisa Goodrich and Xiaowei Lu of HHMI / UCSF, and Kathy Pinson and Paul Scherz of UC Berkeley.

The National Institute of Mental Health (NIMH) is part of the National Institutes of Health (NIH), the Federal Government's primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services.


Story Source:

The above story is based on materials provided by NIH/National Institute Of Mental Health. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute Of Mental Health. "Mouse Gene Trap Helps Decipher Brain's Wiring Diagram." ScienceDaily. ScienceDaily, 8 March 2001. <www.sciencedaily.com/releases/2001/03/010308072654.htm>.
NIH/National Institute Of Mental Health. (2001, March 8). Mouse Gene Trap Helps Decipher Brain's Wiring Diagram. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2001/03/010308072654.htm
NIH/National Institute Of Mental Health. "Mouse Gene Trap Helps Decipher Brain's Wiring Diagram." ScienceDaily. www.sciencedaily.com/releases/2001/03/010308072654.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins