Featured Research

from universities, journals, and other organizations

Proteins Are Vastly More Complicated Than Previously Realized

Date:
May 4, 2001
Source:
University Of Washington
Summary:
The function of proteins – the workhorses of our bodies – depends on how those proteins are physically folded. Researchers around the world are examining the countless complex structures of proteins to learn more about therapies for the human body. This folding process is more complicated than previously realized, according to University of Washington researchers.

The function of proteins – the workhorses of our bodies – depends on how those proteins are physically folded. Researchers around the world are examining the countless complex structures of proteins to learn more about therapies for the human body. Protein folding has been compared in complexity to the folding of delicate origami.

Related Articles


This folding process is more complicated than previously realized, according to University of Washington researchers. Imagine trying to fold a delicate origami crane from silk paper — while you’re in a wind tunnel. In fact, imagine trying to fold the origami in a wind tunnel while countless other hands are also pulling at the paper. And yet, that’s comparable in complexity to what the hundreds of thousands of cells and proteins are doing in your body right now.

That’s because proteins and cells are locked together at numerous contact points. The movement of a cell stretches the proteins around it, and vice versa. A new UW study says scientists are going to have to study how protein structures change when stretched before they understand how the body functions.

"The function of a protein is tightly controlled by its structure, yet there is very little information about how mechanical forces may change the structure of proteins," says Dr. Viola Vogel, director of the University of Washington’s Center for Nanotechnology in the Department of Bioengineering. "Right now, it feels like we are only looking at part of the equation of how proteins work since we just know their equilibrium structures. If you do not know how mechanical forces change the function of cells and proteins, you will not understand different diseases that involve mechanical forces, such as hypertension."

Vogel is one of the authors of the first paper to show, at atomic resolution, how mechanical forces change the structure of a family of protein modules that fold into the same structures -- yet have less than 20 percent of their amino acids in common. "Comparison of the early stages of forced unfolding for fibronectin type III modules" appears in the May 1 Proceedings of the National Academy of Science, a journal of the National Academy of Sciences.

Fibronectin is a useful protein for studying the effects of mechanical force. Fibronectin is found in connective tissue, such as the skin. In the skin, cells are suspended in the extracellular matrix — consisting of thousands of protein fibers that attach to cells at numerous points. These proteins connect with other proteins and hold the mass together – a sort of super glue for cells. It is the movement of these fibers and the resulting pull and push on the cells attached to them, that transmits force to the cells.

Vogel and colleagues ask these questions: What does force do to the fiber? How is force transmitted from the fiber to the cell? And how is force used to determine how the cell regulates the expression of certain proteins? "We are very excited about this because we believe a new field is being born: non-equilibrium protein structure-function analysis. It’s very exciting to think about how nature regulates and controls function. We went from viewing the cell as a bag full of proteins a decade ago to a view of the cell as a dynamic place where proteins assemble and change under mechanical forces," Vogel says.

This new field became possible only in 1997, with the technology that allowed researchers to see what happens when you grab either end of a protein and stretch, using tools such as atomic-force microscopy. They found that proteins rupture as stretching forces overcome energy barriers that stabilize the protein structure.

"Computer simulations allow us to see what happens to the structure if the protein ruptures," Vogel says. The computer simulations were done in collaboration with Dr. Klaus Schulten at the Beckman Institute in Illinois and former UW graduate student Andre Krammer. "People tend to think of protein function as biochemical – chemicals binding to the protein, for example. Only recently have people realized that mechanical tension – cells pulling on the matrix – is important," says David Craig, a graduate bioengineering student and another of the paper’s authors.

Vogel’s lab is examining how mechanical force must be considered in the field of proteomics. "In proteomics, you go from the genome, then to the protein structure, and from that, make a prediction about the protein’s function. But is that enough? Is it sufficient to only know the function in the equilibrium state?," Vogel says. "We think there are a series of proteins that may have different structures, depending on how much force is applied and how it is applied. If that is so, then it adds additional dimension to the field of proteomics."


Story Source:

The above story is based on materials provided by University Of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University Of Washington. "Proteins Are Vastly More Complicated Than Previously Realized." ScienceDaily. ScienceDaily, 4 May 2001. <www.sciencedaily.com/releases/2001/05/010504083718.htm>.
University Of Washington. (2001, May 4). Proteins Are Vastly More Complicated Than Previously Realized. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2001/05/010504083718.htm
University Of Washington. "Proteins Are Vastly More Complicated Than Previously Realized." ScienceDaily. www.sciencedaily.com/releases/2001/05/010504083718.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins