Featured Research

from universities, journals, and other organizations

Vegetation Key To Accurate Climate Modeling

Date:
May 30, 2001
Source:
Penn State
Summary:
Linking vegetation models to climate models when approximating the Earth's past and future climates may make climate predictions more accurate and could provide a better picture of the effects of global warming on the Earth, according to Penn State researchers.

Boston, Mass. – Linking vegetation models to climate models when approximating the Earth's past and future climates may make climate predictions more accurate and could provide a better picture of the effects of global warming on the Earth, according to Penn State researchers.

"Recent studies show that if accurate vegetation is not included in global climate models, anomalies of up to 4 degrees Fahrenheit and a third of an inch of rain per day can occur," says Persaram O. Batra, Penn State graduate student in geosciences.

The way that vegetation is incorporated into a climate model is important. The worst case is of course when vegetation is completely ignored. Assigning uniform fixed vegetation, i.e. grass land or mixed forest, to the land masses does get vegetation into the model, but not accurately. A better choice would be to assign fixed accurate vegetation to land masses, putting grassland where there was grassland and coniferous forest where there were coniferous forests. While this is a good option, it is still a static one. The best incorporation of vegetation is accurate, interactively modeled vegetation data that can influence and be influenced by the climate model.

Atmospheric global climate models often do not, in themselves, include vegetation data, but can be linked to separate vegetation models. The climate model values of such variables as temperature and precipitation are fed into the vegetation model, which produces a vegetation cover for the Earth deciding where tundra, savannahs, temperate and tropical forests would occur. This data, and the effects on climate, including variables like temperature changes and reflectivity are fed back into the climate model that is adjusted and the process is repeated numerous times.

Batra, David Pollard, research associate, and Eric Barron, professor of geosciences and director, Penn State College of Earth and Mineral Sciences' Environment Institute, looked at four different vegetation models and linked them to the GENESIS atmospheric global climate model.

"We were looking at three time periods in the past, that of the Miocene, 20 million years ago, oxygen isotope stage three between 30 and 42 thousand years ago, and the last glacial maximum 21,000 years ago," Batra told attendees at the spring meeting of the American Geophysical Union today (May 29) in Boston.

Batra compared the results of the four vegetation models to what is known about actual vegetation during those time periods on Earth. Information on vegetation during the last glacial maximum is fairly complete, but what is known about the Miocene is less complete. "We want to see how robust the various vegetation models are at different time periods," says Batra. "Then we can use the best models to see how climate change would affect vegetation patterns in the future."

Vegetation can have a substantial impact on climate. If an area is covered with tundra type vegetation, the high reflectivity of the snow, when it falls, will cool that area of the planet. However, if that same area is covered with coniferous forests, the snow would fall to the ground and the dark surface of the treetops would absorb more of the sun's energy and warm, rather than cool, the area. The researchers found that none of the climate models tested were perfect and that some differences occurred between the models. Some models did better in modeling tropical vegetation while others were better at temperate vegetation. Also, some of the vegetation models consider the effects of carbon dioxide on plants, while others ignore carbon dioxide.

Because plant growth and type is dependent on the levels of carbon dioxide and carbon dioxide serves as a greenhouse gas, the researchers believe that its inclusion in the vegetation models may be important.

Atmospheric global climate models are large, complex computer programs that are only as accurate as the data they have and the variables they cover. Adding vegetation into the mix, provides a better picture of the interconnected changes that occur as climate changes.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Vegetation Key To Accurate Climate Modeling." ScienceDaily. ScienceDaily, 30 May 2001. <www.sciencedaily.com/releases/2001/05/010530000200.htm>.
Penn State. (2001, May 30). Vegetation Key To Accurate Climate Modeling. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2001/05/010530000200.htm
Penn State. "Vegetation Key To Accurate Climate Modeling." ScienceDaily. www.sciencedaily.com/releases/2001/05/010530000200.htm (accessed September 2, 2014).

Share This




More Earth & Climate News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands of Fish Dead in Mexico Lake

Raw: Thousands of Fish Dead in Mexico Lake

AP (Sep. 2, 2014) — Over 53 tons of rotting fish have been removed from Lake Cajititlan in western Jalisco state. Authorities say that the thousands of fish did not die of natural causes. (Sep. 2) Video provided by AP
Powered by NewsLook.com
Raw: Iceland Volcano Spewing Smoke

Raw: Iceland Volcano Spewing Smoke

AP (Sep. 2, 2014) — The alert warning for the area surrounding Iceland's Bardarbunga volcano was kept at orange on Tuesday, indicating increased unrest with greater potential for an eruption. Smoke is spewing from the volcano, and lava is spouting nearby. (Sept. 2) Video provided by AP
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Sharks Off the Menu and on the Tourist Trail in Palau

Sharks Off the Menu and on the Tourist Trail in Palau

AFP (Sep. 2, 2014) — Tourists in Palau clamour to dive with sharks thanks to a pioneering conservation initiative -- as the island nation plans to completely ban commercial fishing in its vast ocean territory. 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins