Featured Research

from universities, journals, and other organizations

Cystic Fibrosis Patients Show Too Little Salt In Lungs, Will Need Long-Lasting Treatments

Date:
July 20, 2001
Source:
University Of North Carolina At Chapel Hill
Summary:
Since 1989, scientists have known which gene causes cystic fibrosis, the leading fatal genetic illness among whites in the United States, but they’ve continued to disagree over how it works. University of North Carolina at Chapel Hill School of Medicine researchers believe they have finally solved a key part of the long-standing puzzle.

CHAPEL HILL – Since 1989, scientists have known which gene causes cystic fibrosis, the leading fatal genetic illness among whites in the United States, but they’ve continued to disagree over how it works. Debate has focused on questions such as how abnormalities in what’s called the CFTR gene produce lung injury. Is there too much salt in patients’ lungs, or is it that too little salt leads to stuffed-up airways and a series of chronic, debilitating infections? The right answer remains critical for determining effective treatments to restore the natural, necessary balance of salt and water, doctors say, and for avoiding therapy that would make lung damage more severe.

Related Articles


University of North Carolina at Chapel Hill School of Medicine researchers believe they have finally solved a key part of the long-standing puzzle.

“The answer pretty unequivocally is that there’s too little salt,” said Dr. Richard C. Boucher, Kenan professor of medicine at UNC. “This work presents a clear road map showing which fork we need to take to develop better treatments for CF lung disease. What remains is largely an engineering problem.”

A report on the research appears in the July 20 issue of Molecular Cell, a major scientific journal. Besides Boucher, authors are Drs. Robert Tarran, Maryse Picher and Andrew J. Hirsh, research associates; Barbara Grubb, associate professor of medicine; and C. William Davis, research associate professor of cell and molecular physiology, all at UNC. David Parsons of Women’s and Children’s Hospital in Adelaide, Australia, contributed to the work.

Boucher directs UNC’s Cystic Fibrosis/Pulmonary Research and Treatment Center. He said part of the reason the contentious salt controversy had not been resolved was because the layer of salt and water that coats airways in the lung is only about a millionth of an inch thick. As a result, it has been extremely difficult to study. Also, directly working on babies’ lungs was out of the question for ethical and practical reasons.

“We studied mice genetically engineered here at UNC several years ago to serve as an animal model for cystic fibrosis,” the physician said. “Cells lining the nose of the CF mouse have the same problem with salt transport that cells lining the lungs of CF patients do, and this problem can be measured electrically with a device similar to an electrocardiograph machine.

“The question was whether the abnormal electrical activity was associated with disease in the mouse, and it was,” Boucher said. “The mouse exhibited the same kind of airway disease as human CF patients. They had a lot more mucus-secreting, infection-fighting cells, called goblet cells, than they would have normally. The question then became what was the link between abnormal electrical activity and diseased airways – too little salt or too much salt? The answer was too little salt.”

Next the group experimented with cultured human airway cells from CF patients and found several possible ways of restoring the salt balance to prevent injury, he said.

“The models we used were very good because they actually showed that if you add a certain amount of salt back, you’ll promote clearance of this sticky mucus, which is the problem in cystic fibrosis lung disease,” Boucher said. “They also revealed that you have to have long-acting compounds to do this in a way that’s going to be clinically useful.”

The UNC project is an important step toward understanding CF lung disease and producing better treatments, said Tarran, the paper’s first author.

“We showed that long-term treatment may be needed to reverse the disease and that pharmacological agents can be added to the airways to ameliorate CF lung disease,” he said. “Unfortunately for CF patients, the respiratory tract is very good at removing unwanted substances -- except for mucus -- and our data also suggest that many of the compounds currently used in CF trials are rapidly cleared. Thus, future studies will concentrate on developing long-acting substances.”

Clinical testing recently began on a new compound that might create the proper salt balance after being inhaled several times a day by children and adults with the inherited illness, Boucher said.

The National Institutes of Health and the Cystic Fibrosis Foundation support the continuing research.


Story Source:

The above story is based on materials provided by University Of North Carolina At Chapel Hill. Note: Materials may be edited for content and length.


Cite This Page:

University Of North Carolina At Chapel Hill. "Cystic Fibrosis Patients Show Too Little Salt In Lungs, Will Need Long-Lasting Treatments." ScienceDaily. ScienceDaily, 20 July 2001. <www.sciencedaily.com/releases/2001/07/010720093357.htm>.
University Of North Carolina At Chapel Hill. (2001, July 20). Cystic Fibrosis Patients Show Too Little Salt In Lungs, Will Need Long-Lasting Treatments. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2001/07/010720093357.htm
University Of North Carolina At Chapel Hill. "Cystic Fibrosis Patients Show Too Little Salt In Lungs, Will Need Long-Lasting Treatments." ScienceDaily. www.sciencedaily.com/releases/2001/07/010720093357.htm (accessed October 26, 2014).

Share This



More Health & Medicine News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins