Featured Research

from universities, journals, and other organizations

Gene Therapy Technique Reduces Alcohol Consumption In Rats

Date:
September 14, 2001
Source:
NIH/National Institute On Alcohol Abuse And Alcoholism
Summary:
Scientists at the U.S. Department of Energy's Brookhaven National Laboratory report in the current Journal of Neurochemistry (Volume 78, Number 5) that they used gene therapy techniques to increase levels of dopamine D2 (DRD2) receptors and reduce drinking in rats previously trained to self-administer alcohol. Panayotis Thanos, Ph.D., Nora Volkow, Ph.D., and colleagues used a partially inactivated virus as a vector, or transport agent, to carry copies of the DRD2 gene to the rat nucleus accumbens, the brain area associated with the reinforcing effects of alcohol. Supplying copies of the gene in this manner enables the rat brain cells to manufacture larger amounts of DRD2 receptors than they would ordinarily.

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory report in the current Journal of Neurochemistry (Volume 78, Number 5) that they used gene therapy techniques to increase levels of dopamine D2 (DRD2) receptors and reduce drinking in rats previously trained to self-administer alcohol. Panayotis Thanos, Ph.D., Nora Volkow, Ph.D., and colleagues used a partially inactivated virus as a vector, or transport agent, to carry copies of the DRD2 gene to the rat nucleus accumbens, the brain area associated with the reinforcing effects of alcohol. Supplying copies of the gene in this manner enables the rat brain cells to manufacture larger amounts of DRD2 receptors than they would ordinarily. Strong evidence from pharmacologic studies in both humans and animals indicates that the dopamine pathway plays a major role in brain reward circuits, the function of which is altered by addiction. Whereas a drink of alcohol increases immediate brain production of dopamine (a chemical messenger, or neurotransmitter, involved in locomotion, alcohol reward, and the compulsion to drink) chronic drinking has been associated with decreased dopamine activity in rodents and with low levels of dopamine and its metabolites in humans. In 1996, Dr. Volkow and others showed that DRD2 receptors are depleted in human alcoholics. Whereas behavioral effects of this depletion are unclear, Drs. Thanos and Volkow hypothesize that DRD2 depletion produces a blunted pleasure response that leads alcoholics to increase their intake.

Related Articles


The research team performed two experiments for the current study-one to evaluate the rats' DRD2 receptor levels and one to evaluate drinking behavior at different time points following the DRD2 gene injection. To determine whether receptor levels had increased, they used a signal-emitting system designed to bind to the receptors and detected the signals in brain images known as autoradiographs. The strength of the signals indicated that rats injected with the DRD2 gene had higher receptor levels than previously and than controls. The levels peaked three to four days after injection and returned to near baseline after eight days.

Dr. Thanos and his colleagues then analyzed the drinking behavior of injected rats of two types: rats with a high alcohol preference that drank 80 to 90 percent of daily fluids as alcohol, and rats with low alcohol preference that drank 10 percent of daily fluids as alcohol. After the gene injection, the high alcohol preference rats showed a 43 percent drop in alcohol preference and drank 64 percent less alcohol than rats that received a placebo virus. Low alcohol preference rats also showed a significant drop in both alcohol preference and alcohol intake following treatment with the D2 gene.

"This is the first evidence that overproduction of D2 receptors reduces alcohol intake and suggests that increasing levels of DRD2 may protect against alcohol abuse in humans," Dr. Thanos said. "Although the reduction in drinking behavior in both groups was transient, repeating the DRD2 treatment produced the same dramatic effect." With other Brookhaven researchers, Dr. Thanos is working to develop an improved gene-delivery system that will produce a longer-lasting effect.

"Drs. Thanos and Volkow have used an imaginative approach to investigate the role of DRD2 receptors in alcohol consumption," said NIAAA Director Enoch Gordis, M.D. "Theirs is an important step in continuing work to form the scientific basis of new medications for use in alcoholism treatment."

The National Institute on Alcohol Abuse and Alcoholism, a component of the National Institutes of Health, U.S. Department of Health and Human Services, conducts and supports approximately 90 percent of U.S. research on the causes, consequences, prevention, and treatment of alcohol abuse, alcoholism, and alcohol problems and disseminates research findings to science, practitioner, policy making, and general audiences.


Story Source:

The above story is based on materials provided by NIH/National Institute On Alcohol Abuse And Alcoholism. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute On Alcohol Abuse And Alcoholism. "Gene Therapy Technique Reduces Alcohol Consumption In Rats." ScienceDaily. ScienceDaily, 14 September 2001. <www.sciencedaily.com/releases/2001/09/010914074004.htm>.
NIH/National Institute On Alcohol Abuse And Alcoholism. (2001, September 14). Gene Therapy Technique Reduces Alcohol Consumption In Rats. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2001/09/010914074004.htm
NIH/National Institute On Alcohol Abuse And Alcoholism. "Gene Therapy Technique Reduces Alcohol Consumption In Rats." ScienceDaily. www.sciencedaily.com/releases/2001/09/010914074004.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins