Featured Research

from universities, journals, and other organizations

Scientists: Future Atlantic Hurricane Picture Is Highly Complex

Date:
September 21, 2001
Source:
North Carolina State University
Summary:
In a highly publicized article in the journal Science this summer, a team of meteorologists predicted that the current resurgence in North Atlantic hurricane activity will continue for at least the next 10 to 40 years. That may indeed be the case, say two hurricane researchers at North Carolina State University. But it's only a small part of a complex tropical storm picture facing the U.S. Eastern Seaboard.

In a highly publicized article in the journal Science this summer, a team of meteorologists predicted that the current resurgence in North Atlantic hurricane activity will continue for at least the next 10 to 40 years.

That may indeed be the case, say two hurricane researchers at North Carolina State University. But it's only a small part of a complex tropical storm picture facing the U.S. Eastern Seaboard.

Those NC State meteorologists and oceanographers, Dr. Lian Xie and Dr. Leonard Pietrafesa, have used a recently developed mathematical technique to analyze patterns relating to the tropical cyclones that made landfall along the East Coast between 1887 and 1999.

Their findings: The number of hurricanes making landfall in a given year is controlled not only by the long-term, multi-decade trend described in the Science article, but by three shorter-term cycles as well. These four distinct "temporal modes" – each probably the result of a different atmospheric and oceanic phenomenon – combine to determine the number of tropical storms that make landfall each year, Xie and Pietrafesa explain.

"It's the short-term modes that have the most effect on the number of Atlantic tropical cyclones that make landfall each year," Xie said. "There's a danger if you don't look at all the modes, not just the longest-term mode."

Pietrafesa adds that while the long-term cycle contributes about one or two tropical cyclones per year to the total, the shorter-term cycles typically contribute up to five in a given year for the entire North Atlantic, several of which hit the coast.

The North Atlantic has seen dramatic hurricane activity since 1995, with powerful storms like Hurricanes Fran and Floyd pounding the eastern United States and resulting in many lost lives and extensive property damage. The authors of the July 20 Science article – Drs. Stanley B. Goldenberg and Christopher W. Landsea of the National Oceanic and Atmospheric Administration, Dr. Alberto M. Mestas-Nunez of the University of Miami and Dr. William M. Gray of Colorado State University – suggest that the recent upswing in the number of hurricanes is the beginning of a 20-50 year trend characterized by an increased number of hurricanes.

Xie and Pietrafesa believe that their mathematical analysis technique, called Empirical Mode Decomposition (EMD), more accurately describes the temporal patterns of tropical storm occurrences along the East Coast than the procedure used by Goldenberg and his colleagues.

EMD mathematically analyzes the differences in the number of tropical storms occurring over different time scales, resulting in a series of wave-like graphs describing cycles in the number of landfalling tropical cyclones. Using EMD, Xie and Pietrafesa found four different cycles, or modes.

The number of tropical storms that make landfall in a given year depends on whether each of the four cycles is at its peak, its low point, or somewhere in between. The highest number of hurricanes is likely to occur in years during which most or all of the cycles are "in phase" at their peaks.

The most energetic cycle – the one that shows the greatest variation in the number of landfalling storms between its peak and low-point – is one that lasts three to five years. That cycle, Xie says, essentially adds or subtracts one or two landfalling tropical storm events every year on the East Coast.

The eight-to-12-year cycle can add or subtract an average of one and a half hurricanes per year; the 20-40-year cycle can add or subtract an average of about one-half hurricane per year; and the longest, 40-60 year cycle (similar to the cycle described by Goldenberg and his colleagues) can add or subtract about one hurricane per year.

"The longer-term cycles indicate that in the early 21st century, higher-than-normal landfalling tropical cyclone activity is likely to occur along the eastern United States coast, and in North Carolina in particular," Xie said. "The causes of these decadal trends are not yet clear, but may be related to multi-decadal oscillations of ocean circulations in the Atlantic and Pacific Oceans."

Those oscillations, he said, include the long-term weather events known as El Nino, which is linked to the periodic warming of the Pacific Ocean off the coast of South America, and La Nina, which is the cooling of those same waters.

During the 112-year period for which the NC State researchers have data, an average of 3.23 tropical cyclones pounded the East Coast each year. During El Nino years, that number dropped to an average of 2.47 storms. North Carolina saw an overall average of 0.81 tropical cyclones annually, and 0.56 during El Nino years.

The EMD technique was developed by former NC State oceanic engineering professor Dr. Norden E. Huang, who is now senior fellow and chief scientist for oceanography at the NASA Goddard Flight Center in Maryland.

Xie and Pietrafesa note that scientists still have a great deal to learn about what causes fluctuations in the number of hurricanes, especially over the short-term. "The ability to predict the number of hurricanes for a given year is improving, but we're not there yet," Pietrafesa said.

Their research was funded by the Office of Naval Research and the National Oceanic and Atmospheric Administration.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Cite This Page:

North Carolina State University. "Scientists: Future Atlantic Hurricane Picture Is Highly Complex." ScienceDaily. ScienceDaily, 21 September 2001. <www.sciencedaily.com/releases/2001/09/010921080409.htm>.
North Carolina State University. (2001, September 21). Scientists: Future Atlantic Hurricane Picture Is Highly Complex. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2001/09/010921080409.htm
North Carolina State University. "Scientists: Future Atlantic Hurricane Picture Is Highly Complex." ScienceDaily. www.sciencedaily.com/releases/2001/09/010921080409.htm (accessed July 24, 2014).

Share This




More Earth & Climate News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Observation Boat to Protect Cetaceans During Ship Transfer

Observation Boat to Protect Cetaceans During Ship Transfer

AFP (July 22, 2014) As part of the 14-ship convoy that will accompany the Costa Concordia from the port of Giglio to the port of Genoa, there will be a boat carrying experts to look out for dolphins and whales from crossing the path of the Concordia. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
New Orleans Plans to Recycle Cigarette Butts

New Orleans Plans to Recycle Cigarette Butts

AP (July 21, 2014) New Orleans is the first U.S. city to participate in a large-scale recycling effort for cigarette butts. The city is rolling out dozens of containers for smokers to use when they discard their butts. (July 21) Video provided by AP
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins