Featured Research

from universities, journals, and other organizations

Mayo Clinic Study Of Defective Gene That Causes Huntington's Sheds New Light On Disease

Date:
October 17, 2001
Source:
Mayo Clinic
Summary:
Mayo Clinic researchers have found that the intact mutant protein apparently kills brain cells in patients with Huntington’s Disease by grabbing onto its normal counterpart and other key players in the cell and drawing them into bundles. It is suspected this action prevents the targets from performing their normal functions in the cell.

ROCHESTER, MINN. -- Mayo Clinic researchers have found that the intact mutant protein apparently kills brain cells in patients with Huntington’s Disease by grabbing onto its normal counterpart and other key players in the cell and drawing them into bundles. It is suspected this action prevents the targets from performing their normal functions in the cell.

The results, published in the November issue of Nature Genetics, shed light on how the molecular pathology of Huntington’s disease causes the loss of brain tissue over time in patients. Their results could change the view of how a defective gene causes the disorder.

About 30,000 people in the United States have Huntington’s disease and children of people with HD have a 50 percent chance of inheriting the defective gene. The disease is progressive and there is currently no known cure. The recent results may have a big impact on how we approach therapy and reset thinking on the aberrant interactions of the full-length mutant gene product.

The study was led by Cynthia T. McMurray, Ph.D., together with Roy Dyer, Ph.D., of the Mayo Clinic Department of Molecular Pharmacology and Experimental Therapeutics.

The genetic defect causing HD is an expansion of an amino-acid stretch in a gene product called Huntingtin. Since its discovery in 1993, researchers have focused a great deal of attention on how the mutations causes neurons to die.

The prominent theory to date was that clipping of the mutant gene product generated a small "toxic fragment" in cells. The defective protein from the mutant Huntington’s gene contains an abnormal section. Therefore, fragments with the abnormal section accumulate and become toxic to brain cells. If correct, therapy might aim to block the molecules that do the cutting to prevent the release of the toxic fragment.

However, the recent study suggests a different pathway. Dr. McMurray and her colleagues find in autopsy tissue from the brains of HD patients that the mutant protein is actually resistant to getting chopped up much more than its normal counterpart. As a result, the full-length protein begins to accumulate in the neuron with time, consistent with a late-onset disorder of HD. Further, they show that the accumulation of the mutant protein grabs the normal counterpart in the cell. Thus, expression of the mutant may act to "knockout" the function of the HD protein which is essential to cell function. If correct, then therapy may involve approaches to disruption of the clumps.

The recent study suggests the full-length protein is responsible for toxicity rather than a small toxic fragment.

"Our results shift the thinking about the mechanism of Huntington’s disease therapy,"' says Dr. McMurray, the senior author of the study. The full-length protein may be capable of grabbing partners that it cannot if it is only a small fragment. If the mutant protein is not clipped, then it is expected to reside in a particular compartment in the cell called the "cytoplasm." Therefore, scientists may redirect focus on critical targets grabbed by the mutant protein found in this compartment.

"Our results suggest that trying to find ways to prevent the chopping up of the mutant protein won’t be the most effective strategy to help treat the disease," said Dr. McMurray.

Instead, Dr. McMurray suggests that approaches aimed at developing molecules to prevent the mutant from grabbing cellular targets may be most effective. She is working on such approaches.

HD is an inherited, adult-onset disease of the central nervous system characterized by involuntary movements, cognitive impairment progressing to dementia and mood disturbances -- these symptoms are due to extensive loss of brain neurons.


Story Source:

The above story is based on materials provided by Mayo Clinic. Note: Materials may be edited for content and length.


Cite This Page:

Mayo Clinic. "Mayo Clinic Study Of Defective Gene That Causes Huntington's Sheds New Light On Disease." ScienceDaily. ScienceDaily, 17 October 2001. <www.sciencedaily.com/releases/2001/10/011017064812.htm>.
Mayo Clinic. (2001, October 17). Mayo Clinic Study Of Defective Gene That Causes Huntington's Sheds New Light On Disease. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2001/10/011017064812.htm
Mayo Clinic. "Mayo Clinic Study Of Defective Gene That Causes Huntington's Sheds New Light On Disease." ScienceDaily. www.sciencedaily.com/releases/2001/10/011017064812.htm (accessed July 22, 2014).

Share This




More Mind & Brain News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Do Obese Women Have 'Food Learning Impairment'?

Do Obese Women Have 'Food Learning Impairment'?

Newsy (July 18, 2014) Yale researchers tested 135 men and women, and it was only obese women who were deemed to have "impaired associative learning." Video provided by Newsy
Powered by NewsLook.com
Does Mixing Alcohol and Energy Drinks Boost Urge To Drink?

Does Mixing Alcohol and Energy Drinks Boost Urge To Drink?

Newsy (July 18, 2014) A new study suggests that mixing alcohol with energy drinks makes you want to keep the party going. Video provided by Newsy
Powered by NewsLook.com
Pot Cooking Class Teaches Responsible Eating

Pot Cooking Class Teaches Responsible Eating

AP (July 18, 2014) Following the nationwide trend of eased restrictions on marijuana use, pot edibles are growing in popularity. One Boston-area cooking class is teaching people how to eat pot responsibly. (July 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins