Featured Research

from universities, journals, and other organizations

"Smart" Carriers And Tiny Skin-Deep "Medicine Cabinets" Improve Drug Effectiveness Against Cancer, AIDS, Other Diseases

Date:
October 25, 2001
Source:
Rutgers, The State University Of New Jersey
Summary:
An oral or injected "smart" drug carrier that seeks out targeted diseased cells in the body and a tiny gel "medicine cabinet" injected under the skin to supply drugs as needed on a weekly, monthly or yearly basis have been developed by a team of scientists from Rutgers, the University of Medicine and Dentistry of New Jersey (UMDNJ) and the Cancer Institute of New Jersey (CINJ).

An oral or injected "smart" drug carrier that seeks out targeted diseased cells in the body and a tiny gel "medicine cabinet" injected under the skin to supply drugs as needed on a weekly, monthly or yearly basis have been developed by a team of scientists from Rutgers, the University of Medicine and Dentistry of New Jersey (UMDNJ) and the Cancer Institute of New Jersey (CINJ).

The two systems based on polymer (plastic) technology are being detailed by the scientists this week (Oct. 21-25) in a series of more than 30 research papers at the 2001 American Association of Pharmaceutical Scientists' (AAPS) annual meeting in Denver. AAPS is a professional scientific society of more than 11,000 members employed in academia, industry, government and other research institutes worldwide.

The "smart" polymer, taken orally as a pill or injected, can be targeted to release its drugs in specific organs or cells by means of "ligands," a variety of compounds that interact only with the receptors on certain types of cells, said Patrick J. Sinko, chairman of the department of pharmaceutics in Rutgers' College of Pharmacy.

"We attach the drug or drugs to the polymer and then we attach the ligand," said Sinko. "The ligand is like the address on a package, making sure the polymer with its drug or package of drugs goes directly to the diseased cell." When it reaches its destination, the ligand hooks up to the cell surface and permits the polymer and its drug cargo to pass into the cell, the researcher said.

Sinko and his collaborators, Michael Leibowitz and Stanley Stein of UMDNJ-Robert Wood Johnson Medical School, have also shown that without the targeting ligands, the drug-polymers are unable to penetrate cells, a discovery that led to the first patent for a drug-delivery system this past summer plus many pending patents.

When injected under the skin, the polymer gel drug carrier forms a tiny lump or "button" that serves as a minuscule medicine cabinet, delivering multiple drugs to patients in a controlled fashion over days, weeks or years, Sinko said. "The gel is ideal for certain types of patients, such as elderly patients or schizophrenic patients who tend to forget to take their medicines, or for certain kinds of injected drugs where a controlled release significantly improves therapeutic outcomes," Sinko said.

When the button is gone, the patient or care giver knows that it is time to get another injection, Sinko said, "an important consideration for patients who may not be able to manage their medications on their own." Animal tests have proven so promising that a company, Theraport Biosciences, based in East Brunswick, has been formed to further develop the technology in cooperation with, and under license to, the universities. The firm ultimately plans to market the targeted drug-delivery system under the name TheraBus and the gel system under the name TheraGel.

Using polymers to transport drugs has overcome another basic problem of pharmacology: Most drugs are fatty compounds that don't dissolve in water and are therefore difficult for body tissues to absorb. Putting them inside a polymer matrix makes them water soluble and gives them better pharmaceutical properties, the researchers found.

For example, Sinko noted, until now, camptothecin, a powerful drug designed to fight cancer, has not been marketable because it is virtually insoluble and difficult for the body to absorb. "But attaching it to a smart polymer drug carrier not only made it soluble and useable, it made the drug 30 to 50 times more potent."

The smart polymer has also proven highly effective in delivering a powerful AIDS-fighting peptide known as TAT inhibitor, which previously could not reach diseased body cells because peptides are destroyed by the body's digestive processes. In addition, even when they reach AIDS-infected cells, peptides can't easily penetrate them.

Because the polymer protects the TAT inhibitor within the body until it has reached its targeted cells, it has made the drug a potentially powerful weapon against AIDS, Sinko said. "In laboratory testing, it was as effective or more effective than many AIDS drugs on the market today."


Story Source:

The above story is based on materials provided by Rutgers, The State University Of New Jersey. Note: Materials may be edited for content and length.


Cite This Page:

Rutgers, The State University Of New Jersey. ""Smart" Carriers And Tiny Skin-Deep "Medicine Cabinets" Improve Drug Effectiveness Against Cancer, AIDS, Other Diseases." ScienceDaily. ScienceDaily, 25 October 2001. <www.sciencedaily.com/releases/2001/10/011025072104.htm>.
Rutgers, The State University Of New Jersey. (2001, October 25). "Smart" Carriers And Tiny Skin-Deep "Medicine Cabinets" Improve Drug Effectiveness Against Cancer, AIDS, Other Diseases. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2001/10/011025072104.htm
Rutgers, The State University Of New Jersey. ""Smart" Carriers And Tiny Skin-Deep "Medicine Cabinets" Improve Drug Effectiveness Against Cancer, AIDS, Other Diseases." ScienceDaily. www.sciencedaily.com/releases/2001/10/011025072104.htm (accessed September 18, 2014).

Share This



More Health & Medicine News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Cost of Ebola

The Cost of Ebola

Reuters - Business Video Online (Sep. 18, 2014) As Sierra Leone prepares for a three-day "lockdown" in its latest bid to stem the spread of Ebola, Ciara Lee looks at the financial implications of fighting the largest ever outbreak of the disease. Video provided by Reuters
Powered by NewsLook.com
What HealthKit Bug Means For Your iOS Fitness Apps

What HealthKit Bug Means For Your iOS Fitness Apps

Newsy (Sep. 18, 2014) Apple has delayed the launch of the HealthKit app platform, citing a bug. Video provided by Newsy
Powered by NewsLook.com
Residents Vaccinated as Haiti Fights Cholera Epidemic

Residents Vaccinated as Haiti Fights Cholera Epidemic

AFP (Sep. 18, 2014) Haitians receive the second dose of the vaccine against cholera as part of the UN's vaccination campaign. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com
Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins