Featured Research

from universities, journals, and other organizations

Researchers Discover New Mechanism That Targets And Destroys Abnormal RNA

Date:
March 22, 2002
Source:
Howard Hughes Medical Institute
Summary:
Research teams from two Howard Hughes Medical Institute (HHMI) laboratories have identified a new mechanism that cells use to recognize and destroy abnormal messenger RNA (mRNA). It is likely that cells employ the new mechanism, called nonstop decay, to target and destroy RNA molecules that contain errors.

March 22, 2002 -- Research teams from two Howard Hughes Medical Institute (HHMI) laboratories have identified a new mechanism that cells use to recognize and destroy abnormal messenger RNA (mRNA). It is likely that cells employ the new mechanism, called nonstop decay, to target and destroy RNA molecules that contain errors.

Although nonstop decay is a normal RNA-policing mechanism, the researchers suggest that it might interfere with some drug treatments for cystic fibrosis and other genetic diseases. The new studies suggest that nonstop decay can be thwarted, which may make drug treatments for these diseases more effective.

The discovery of nonstop decay is reported in the March 22, 2002, issue of the journal Science by research teams led by HHMI investigators Harry C. Dietzat The Johns Hopkins University School of Medicine, and Roy R. Parker at the University of Arizona.

Messenger RNA molecules are the genetic templates for proteins. In constructing proteins, the mRNA template is transcribed from DNA genes and transported to the ribosomes – the cell’s protein “factories” that are large complexes of protein and RNA. Given the importance of mRNA as an information-carrying molecule, the machinery that regulates mRNA levels and destroys faulty mRNA is critical in ensuring that errors in the genetic code are not passed on to proteins.

According to Dietz, his research team first believed that nonstop decay was similar to nonsense-mediated decay, the cell’s principal mechanism for destroying faulty mRNA that contains abnormal early stop signals called “nonsense” codons. Many genetic mutations or errors in transcribing mRNA result in nonsense codons that fail to code for any amino acids, the building blocks of proteins.

“At the beginning, we had the hypothesis that an mRNA nonstop transcript may behave very much like a nonsense transcript,” said Dietz. “In both circumstances the ribosome is deprived of the potential to see a bona fide termination codon in its proper context.”

One critical clue that the nonsense and nonstop mechanisms were different emerged from the work of Pamela A. Frischmeyer, in Dietz’s laboratory, who showed in experiments in yeast that nonstop decay shared none of the enzymes required for nonsense-mediated decay. “We found that nonstop decay was an entirely new mRNA turnover mechanism that had none of the properties of nonsense-mediated decay, or of normal mRNA turnover in the cell,” said Dietz. Additional experiments showed that the same nonstop decay mechanism found in yeast was also conserved in mammalian cells, he said.

“Once we recognized this conservation, the question arose as to why evolution would develop and maintain this mechanism,” said Dietz. When the scientists searched genomic databases, they found a surprise: One percent of genes in both humans and yeast produce mRNAs containing specific sequences that would trigger degradation of the RNA by nonstop decay.

“These sequences were often conserved through evolution in a given message,” said Dietz. “If the net result was simply to be wasteful, to cause degeneration of transcripts, then we would expect that they would not be conserved. But the fact that they were conserved suggests that these nonstop transcripts, and the proteins that could result from them, may have some importance in normal development.”

According to Dietz, nonstop mRNA transcripts might be important in enabling production of shortened proteins that are needed at specific stages of development. At later stages of development, when these truncated proteins are no longer needed, their mRNA could easily be destroyed by nonstop decay.

Dietz and his colleagues also explored whether nonstop decay reduces the effectiveness of drugs currently being tested to treat genetic diseases in which mutations cause premature termination of protein production.

“A specific example is the testing of drugs called aminoglycosides to treat cystic fibrosis and other diseases caused by premature termination codons,” said Dietz. “The idea is that these drugs would allow read-through of such codons, to generate adequate levels of full-length functional proteins. Unfortunately, these drugs have not performed very well,” he said.

“Our studies of the effects of one such drug on yeast indicate that this read-through generates mRNAs that trigger the nonstop decay mechanism to degrade them,” said Dietz. This finding offers the promise that drugs that inhibit nonstop decay might enable aminoglycoside drugs to function as effective treatments for some genetic diseases.

“Termination codons are present in about one-third of human disease genes, representing literally thousands of genes,” said Dietz. “So this dual-drug treatment strategy could be relevant to a large number of human disorders, including cystic fibrosis and muscular dystrophy.”

In the second Science paper, lead author Ambro van Hoof, in Parker’s laboratory, did experiments that revealed the specific cellular machinery that produces nonstop decay. According to Parker, those experiments showed that a multi-enzyme complex called the exosome is important for nonstop decay.

The exosome is a collection of enzymes called exonucleases that snip apart RNA molecules. In their experiments, van Hoof, Parker and their colleagues set out to see if the exosome was involved in nonstop mRNA decay.

“It was known that the exosome was involved in a variety of RNA degradation processes in the cell, probably controlled through specific adapters, although we really don’t understand the mechanisms well,” said Parker. According to Parker, the adapter protein, which is attached to the exosome, somehow recognizes the nonstop RNA and attaches to the ribosome.

Parker, van Hoof and their colleagues concentrated on a specific adapter protein called Ski7p, because earlier studies had shown that it had characteristics that made it a good candidate for involvement in nonstop decay. “So, our hypothesis was that Ski7p recognizes these ribosomes holding nonstop mRNAs, and recruits the exosome to degrade the defective messages,” said Parker.

The scientists’ experiments in yeast revealed that exosomes are, indeed, required for nonstop decay and that Ski7p does bind to exosomes. Their studies also showed that when Ski7p is mutated to disrupt its function, the nonstop decay machinery ceases to operate. According to Parker, additional studies are underway to understand how Ski7p recognizes and begins degradation of the nonstop mRNA buried deep within the ribosome.


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Researchers Discover New Mechanism That Targets And Destroys Abnormal RNA." ScienceDaily. ScienceDaily, 22 March 2002. <www.sciencedaily.com/releases/2002/03/020322074154.htm>.
Howard Hughes Medical Institute. (2002, March 22). Researchers Discover New Mechanism That Targets And Destroys Abnormal RNA. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2002/03/020322074154.htm
Howard Hughes Medical Institute. "Researchers Discover New Mechanism That Targets And Destroys Abnormal RNA." ScienceDaily. www.sciencedaily.com/releases/2002/03/020322074154.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins