Featured Research

from universities, journals, and other organizations

By "Fooling" The Body, Molecule Helps Set Course To Heart Disease

Date:
June 27, 2002
Source:
University Of California, Irvine
Summary:
A small molecule in the liver plays a major role in starting the cellular processes that lead to the hardening of the arteries and heart disease that's common in kidney failure, a UC Irvine study has found.

Irvine, Calif., June 20, 2002 -- A small molecule in the liver plays a major role in starting the cellular processes that lead to the hardening of the arteries and heart disease that's common in kidney failure, a University of California, Irvine study has found.

The study is the first to link this enzyme molecule to high cholesterol levels and hardening of the arteries, also known as atherosclerosis, and suggests that the molecule's action may be happening in many cases of heart disease and stroke, currently the leading killer of Americans. The researchers' findings appear in the online version of the American Journal of Physiology - Endocrinology and Metabolism.

Dr. Nick Vaziri, professor of medicine and physiology and chief of nephrology at UCI Medical Center, and his colleagues found an enzyme called ACAT-2 in very high levels in rats with simulated kidney failure. By "fooling" the liver into operating as if cholesterol levels were low, ACAT-2 accelerated the production of fat molecules known as VLDL, or "bad cholesterol," which lead to the buildup of atherosclerotic plaque and, subsequently, cardiovascular disease.

Vaziri and his colleagues found that ACAT-2, which normally takes cholesterol and stores it in specialized liver cells, was much more active in cases of kidney failure. Removing the cholesterol induced the liver to sense, falsely, that cholesterol counts were too low and produce high levels of heart disease-causing lipids. In rats that had normally functioning kidneys, ACAT-2 levels were normal, as were their cholesterol and lipid levels.

"In kidney failure, which is one major cause of heart disease, we see very high levels of VLDL and other lipid abnormalities that lead to the production of atherosclerotic plaque," Vaziri said. "We discovered that high levels of ACAT-2 in kidney failure accelerated the transport and storage of cholesterol into cells in the liver, which induced the liver to increase production of VLDL and other lipids as the liver sensed an apparent--but false--low level of cholesterol. It's possible that this activation of ACAT-2 may also be happening in the development of cardiovascular cases that are not due to kidney failure."

ACAT also helped directly in the buildup of plaque associated with arteriosclerosis, the researchers found. As ACAT-2 acted to store circulating cholesterol, it created bodies called foam cells, which are the building blocks of atherosclerotic plaque. As foam cells accumulate, the atherosclerosis progresses, leading to artery blockage and the blood flow reduction seen in heart disease. Plaque also can break off and potentially lead to stroke.

Heart disease is the leading killer of Americans, resulting in about 40 percent of all deaths every year; about 62 million have some type of cardiovascular disease, according to the American Heart Association. A leading cause is atherosclerosis. Kidney failure is another important contributor to the high rates of heart disease. About 20 million Americans are suspected of having some degree of kidney failure.

While ACAT-2 is found in the liver, its close relative, ACAT-1, is an enzyme found in most other organs and tissues in the body. Vaziri and his team are looking at whether inhibitors of ACAT-1 and ACAT-2 could help reduce the buildup of atherosclerotic plaque in the body.

"While our experiments were looking at kidney failure, we think that controlling ACAT production may be useful in combating atherosclerosis, regardless of its cause," Vaziri said. "Of course, researchers will have to determine ACAT levels in other disorders that lead to atherosclerosis."

Vaziri and his team, who have spent decades studying the complex interplay between kidneys, blood vessels and the heart in cardiovascular disease, are now looking at possible inhibitors of ACAT. These inhibitors, if they work, would possibly be candidates for drugs that inhibit the production of plaque that leads to disease.

Vaziri's work was supported by gifts from Thomas Yuen, chairman of SRS Labs in Santa Ana, Calif.


Story Source:

The above story is based on materials provided by University Of California, Irvine. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, Irvine. "By "Fooling" The Body, Molecule Helps Set Course To Heart Disease." ScienceDaily. ScienceDaily, 27 June 2002. <www.sciencedaily.com/releases/2002/06/020627004036.htm>.
University Of California, Irvine. (2002, June 27). By "Fooling" The Body, Molecule Helps Set Course To Heart Disease. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2002/06/020627004036.htm
University Of California, Irvine. "By "Fooling" The Body, Molecule Helps Set Course To Heart Disease." ScienceDaily. www.sciencedaily.com/releases/2002/06/020627004036.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins