Featured Research

from universities, journals, and other organizations

"Futile" Cycle Both Fights Diabetes And Causes Weight Gain; Penn Researchers Describe Paradox Underlying The Effectiveness Of Anti-Diabetes Drugs

Date:
September 25, 2002
Source:
University Of Pennsylvania Medical Center
Summary:
If obesity is the leading cause of type II diabetes, then why do thiazolidinediones (TZDs), the only available drugs that treats this form of diabetes, actually cause more weight gain? online version of Nature Medicine, researchers at the University of Pennsylvania School of Medicine address the fundamental workings of TZDs (also known as glitazones or under brand names such as Actos® and Avandia®), and provide a potential new target for further study.

Philadelphia, PA -– If obesity is the leading cause of type II diabetes, then why do thiazolidinediones (TZDs), the only available drugs that treats this form of diabetes, actually cause more weight gain? online version of Nature Medicine, researchers at the University of Pennsylvania School of Medicine address the fundamental workings of TZDs (also known as glitazones or under brand names such as Actos® and Avandia®), and provide a potential new target for further study.

Their research describes how TZDs trigger the creation of glycerol kinase, an enzyme that causes fat cells to store fatty acids faster than it produces them.

"It is what researchers call a 'futile' cycle. Just as fat cells release their larder of fatty acids, glycerol kinase causes the fat cells to put them back in storage," said Mitchell A. Lazar, MD, PhD, Chief of the Division of Endocrinology, Diabetes, and Metabolism and Director of the Penn Diabetes Center. "The glycerol kinase is packing the pantry faster than fat cells can pull the cans off of the shelves. The net influx of fatty acids into fat tissue contributes to reduced fatty acids in the bloodstream that, in turn, leads to increased sensitivity to insulin."

Type II, or adult-onset diabetes, occurs as cells lose the ability to respond to insulin, a hormone which allows cells to absorb sugar for fuel. The disease affects millions, and has become an epidemic in the industrialized world. According to Lazar, two big mysteries remain concerning type II diabetes: how cells become insulin resistant and how TZDs cause them to lose resistance to insulin. By studying how the drug works, the researchers have uncovered a fundamental clue that may allow the development of better therapies "Right now, our findings suggest that weight gain is an inherent part of how TZDs function and diabetics should bear in mind the role of a healthy diet in combination with drug therapy," said Lazar. "TZDs actually lower insulin requirements in diabetics, and this is likely to be beneficial in terms of the risk of hypertension and heart disease associated with diabetes."

Despite their beneficial qualities, it seems that TZDs have little respect for medical textbooks. "According to conventional medical knowledge, fat cells do not produce glycerol kinase for precisely the reason that helps TZDs to be effective," said Lazar.

Fatty acids are stored in fat cells as triglycerides (TGs). When the body senses that it needs fuel, such as what happens when diabetic cells cannot absorb blood sugar, fat cells breakdown TGs to produce glycerol, which travels to the liver to make the sugar glucose, and fatty acids, which muscles use an emergency fuel source.

TZDs, however, reverse this process as it happens. When the drug binds to a receptor in fat cells called PPARgamma, TZD causes the cells to uncharacteristically produce glycerol kinases. These enzymes then recombine glycerol and fatty acids into TGs. They also open the cell's door to trap passing fatty acids, which lowers the amount of fatty acids in the bloodstream.

In addition, researchers have found that TZDs may also alter the chemical signals produced by fat cells, which may prove beneficial in producing the next generation of anti-diabetes drugs.

"We have come to understand that fat cells are more than just storage bins for excess fats," said Lazar. "They produce hormones and actively regulate how our bodies process and use fats. Future drug discovery may depend on the role of fat itself."


Story Source:

The above story is based on materials provided by University Of Pennsylvania Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania Medical Center. ""Futile" Cycle Both Fights Diabetes And Causes Weight Gain; Penn Researchers Describe Paradox Underlying The Effectiveness Of Anti-Diabetes Drugs." ScienceDaily. ScienceDaily, 25 September 2002. <www.sciencedaily.com/releases/2002/09/020925063813.htm>.
University Of Pennsylvania Medical Center. (2002, September 25). "Futile" Cycle Both Fights Diabetes And Causes Weight Gain; Penn Researchers Describe Paradox Underlying The Effectiveness Of Anti-Diabetes Drugs. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2002/09/020925063813.htm
University Of Pennsylvania Medical Center. ""Futile" Cycle Both Fights Diabetes And Causes Weight Gain; Penn Researchers Describe Paradox Underlying The Effectiveness Of Anti-Diabetes Drugs." ScienceDaily. www.sciencedaily.com/releases/2002/09/020925063813.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins