Featured Research

from universities, journals, and other organizations

Foxd3 Gene Allows Stem Cells To Remain Stem Cells

Date:
October 15, 2002
Source:
University Of Pennsylvania Medical Center
Summary:
In the search to understand the nature of stem cells, researchers at the University of Pennsylvania School of Medicine have identified a regulatory gene that is crucial in maintaining a stem cell's ability to self-renew. According to their findings, the Foxd3 gene is a required factor for pluripotency – the ability of stem cells to turn into different types of tissue – in the mammalian embryo. Their research is presented in the October 15th issue of the journal Genes and Development.

Philadelphia, PA – In the search to understand the nature of stem cells, researchers at the University of Pennsylvania School of Medicine have identified a regulatory gene that is crucial in maintaining a stem cell's ability to self-renew. According to their findings, the Foxd3 gene is a required factor for pluripotency – the ability of stem cells to turn into different types of tissue – in the mammalian embryo. Their research is presented in the October 15th issue of the journal Genes and Development.

"Stem cells represent a unique tissue type with great potential for disease therapy, but if we are to use stem cells then we ought to know the basis of their abilities," said Patricia Labosky, PhD, an Assistant Professor in the Department of Cell and Developmental Biology. "Among the stem cell regulatory genes, it appears that Foxd3 gene expression keeps stem cells from quickly differentiating – that is, developing into different types of tissue – holding back the process so that an embryo will have enough stem cells to continue developing normally."

To study the function of the Foxd3 gene, Labosky and her colleagues generated mice with an inactivating mutation in the gene, and then analyzed those mice to determine the role of the Foxd3 protein.

Foxd3-deficient embryos do not survive very long. While part of the yolk sac forms, the inner cell mass that contains all the cells that make up the body of the developing embryos fails to expand enough to produce the embryo and some of the supportive tissues. Without Foxd3, the mouse embryos simply could not maintain enough stem cells to survive a crucial point in their development.

"Our findings implicate Foxd3 as one of the few genes serving as a 'master switch' of the developing embryo," said Labosky. "These genes determine the fate of cells by turning on or off other genes in response to signals in the embryo."

Foxd3 joins previously identified genes, such as Oct4, Fgf4, and Sox2, which control the pluripotency of embryonic stem cells in the early stages of embryogenesis. In their experiments, Labosky and her colleagues found that these genes are still expressed despite the lack of Foxd3. This suggests Foxd3 functions either downstream of Oct4, Fgf4 and Sox2, or along a parallel pathway.

The researchers determined that normal embryonic development can be restored by adding non-mutant embryonic stem cells to the Foxd3-mutant embryos, indicating that Foxd3 acts in the inner cell mass and its derivatives. According to Labosky, Foxd3 is a key regulator of mammalian stem cells, with a clear counterpart in humans. Foxd3 gene expression is a diagnostic characteristic of human embryonic stem cells, suggesting that the gene may function in a similar fashion in mouse and human cells.

"If we are to take advantage of stem cells as a clinical therapeutic, then it is absolutely vital to identify the key regulatory genes such as Foxd3 that control the process of cell differentiation," said Labosky. "Once we understand how these genes function we are that much closer to being able to mold stem cells to meet our needs."


Story Source:

The above story is based on materials provided by University Of Pennsylvania Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania Medical Center. "Foxd3 Gene Allows Stem Cells To Remain Stem Cells." ScienceDaily. ScienceDaily, 15 October 2002. <www.sciencedaily.com/releases/2002/10/021015073342.htm>.
University Of Pennsylvania Medical Center. (2002, October 15). Foxd3 Gene Allows Stem Cells To Remain Stem Cells. ScienceDaily. Retrieved September 24, 2014 from www.sciencedaily.com/releases/2002/10/021015073342.htm
University Of Pennsylvania Medical Center. "Foxd3 Gene Allows Stem Cells To Remain Stem Cells." ScienceDaily. www.sciencedaily.com/releases/2002/10/021015073342.htm (accessed September 24, 2014).

Share This



More Health & Medicine News

Wednesday, September 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins