Featured Research

from universities, journals, and other organizations

Foxd3 Gene Allows Stem Cells To Remain Stem Cells

Date:
October 15, 2002
Source:
University Of Pennsylvania Medical Center
Summary:
In the search to understand the nature of stem cells, researchers at the University of Pennsylvania School of Medicine have identified a regulatory gene that is crucial in maintaining a stem cell's ability to self-renew. According to their findings, the Foxd3 gene is a required factor for pluripotency – the ability of stem cells to turn into different types of tissue – in the mammalian embryo. Their research is presented in the October 15th issue of the journal Genes and Development.

Philadelphia, PA – In the search to understand the nature of stem cells, researchers at the University of Pennsylvania School of Medicine have identified a regulatory gene that is crucial in maintaining a stem cell's ability to self-renew. According to their findings, the Foxd3 gene is a required factor for pluripotency – the ability of stem cells to turn into different types of tissue – in the mammalian embryo. Their research is presented in the October 15th issue of the journal Genes and Development.

"Stem cells represent a unique tissue type with great potential for disease therapy, but if we are to use stem cells then we ought to know the basis of their abilities," said Patricia Labosky, PhD, an Assistant Professor in the Department of Cell and Developmental Biology. "Among the stem cell regulatory genes, it appears that Foxd3 gene expression keeps stem cells from quickly differentiating – that is, developing into different types of tissue – holding back the process so that an embryo will have enough stem cells to continue developing normally."

To study the function of the Foxd3 gene, Labosky and her colleagues generated mice with an inactivating mutation in the gene, and then analyzed those mice to determine the role of the Foxd3 protein.

Foxd3-deficient embryos do not survive very long. While part of the yolk sac forms, the inner cell mass that contains all the cells that make up the body of the developing embryos fails to expand enough to produce the embryo and some of the supportive tissues. Without Foxd3, the mouse embryos simply could not maintain enough stem cells to survive a crucial point in their development.

"Our findings implicate Foxd3 as one of the few genes serving as a 'master switch' of the developing embryo," said Labosky. "These genes determine the fate of cells by turning on or off other genes in response to signals in the embryo."

Foxd3 joins previously identified genes, such as Oct4, Fgf4, and Sox2, which control the pluripotency of embryonic stem cells in the early stages of embryogenesis. In their experiments, Labosky and her colleagues found that these genes are still expressed despite the lack of Foxd3. This suggests Foxd3 functions either downstream of Oct4, Fgf4 and Sox2, or along a parallel pathway.

The researchers determined that normal embryonic development can be restored by adding non-mutant embryonic stem cells to the Foxd3-mutant embryos, indicating that Foxd3 acts in the inner cell mass and its derivatives. According to Labosky, Foxd3 is a key regulator of mammalian stem cells, with a clear counterpart in humans. Foxd3 gene expression is a diagnostic characteristic of human embryonic stem cells, suggesting that the gene may function in a similar fashion in mouse and human cells.

"If we are to take advantage of stem cells as a clinical therapeutic, then it is absolutely vital to identify the key regulatory genes such as Foxd3 that control the process of cell differentiation," said Labosky. "Once we understand how these genes function we are that much closer to being able to mold stem cells to meet our needs."


Story Source:

The above story is based on materials provided by University Of Pennsylvania Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania Medical Center. "Foxd3 Gene Allows Stem Cells To Remain Stem Cells." ScienceDaily. ScienceDaily, 15 October 2002. <www.sciencedaily.com/releases/2002/10/021015073342.htm>.
University Of Pennsylvania Medical Center. (2002, October 15). Foxd3 Gene Allows Stem Cells To Remain Stem Cells. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2002/10/021015073342.htm
University Of Pennsylvania Medical Center. "Foxd3 Gene Allows Stem Cells To Remain Stem Cells." ScienceDaily. www.sciencedaily.com/releases/2002/10/021015073342.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins