Featured Research

from universities, journals, and other organizations

Using Computers, Scientists Successfully Predict Evolution Of E. Coli Bacteria

Date:
November 15, 2002
Source:
National Science Foundation
Summary:
For more than a decade, researchers have been trying to create accurate computer models of Escherichia coli (E. coli), a bacterium that makes headlines for its varied roles in food poisoning, drug manufacture and biological research. By combining laboratory data with recently completed genetic databases, researchers can craft digital colonies of organisms that mimic, and even predict, some behaviors of living cells to an accuracy of about 75 percent.

For more than a decade, researchers have been trying to create accurate computer models of Escherichia coli (E. coli), a bacterium that makes headlines for its varied roles in food poisoning, drug manufacture and biological research.

Related Articles


By combining laboratory data with recently completed genetic databases, researchers can craft digital colonies of organisms that mimic, and even predict, some behaviors of living cells to an accuracy of about 75 percent.

Now, NSF-supported researchers at the University of California at San Diego have created a computer model that accurately predicts how E. coli metabolic systems adapt and evolve when the bacteria are placed under environmental constraints. Bernhard Palsson, Rafael Ibarra (now at GenVault Corporation in Carlsbad, California) and Jeremy Edwards (now at the University of Delaware at Newark) report their findings in the November 14 issue of Nature.

"Ours is the only existing genome-scale model of E. coli," says Palsson. In addition, while many approaches to genetics experiments "knock out" individual genes and track the results, the new model takes a whole-system approach. Changing one aspect of a genetic code could be irrelevant if an organism adapts and evolves, says Palsson. The constraints-based models allow the E. coli to evolve more naturally along several possible paths.

Scientists may use the approach to design new bacterial strains on the computer by controlling environmental parameters and predicting how microorganisms adapt over time. Then, by recreating the environment in a laboratory, researchers may be able to coax living bacteria into evolving into the new strain.

The resulting strains may be more efficient at producing insulin or cancer-fighting drugs than existing bacterial colonies engineered by researchers using standard techniques.

"Now we have a better tool to predict how bacteria evolve and adapt to changes," says National Science Foundation program director Fred Heineken. "As a result, this constraints-based approach could lead to better custom-built organisms," he says.

The researchers based their digital bacteria on earlier laboratory studies and E. coli genome sequences, detailed genetic codes that have been augmented with experimental information about the function of every gene.

Such digital models are known as "in silico" experiments -- a play on words referring to biological studies conducted on a computer. In the first days of testing on living organisms, the bacteria did not adapt into the strain predicted by the simulation. Yet, with more time (40 days, or 500-1000 generations), the E. coli growing in the laboratory flasks adapted and evolved into a strain like the one the in silico model predicted.

"The novelty of the constraints-based approach is that it accounts for changes in cellular properties over time," says Palsson.

"Fortunately," he adds, "the other advantage is that it actually works surprisingly often."

For many years, drug manufacturers have manipulated the genetic code in E. coli strains, creating species that can produce important substances, such as the hormone insulin for use by people with diabetes or the experimental cancer drug angiostatin.

Using the new constraints-based techniques Palsson and his colleagues developed, drug manufacturers and bioprocessing companies could use computers to determine the genetic code that could yield the most efficient and productive versions of E. coli, and then use adaptive evolution to create bacterial strains that have the desired properties.

Says Palsson, "This development potentially opens up a revolutionary new direction in the design of new production strains." In addition, says Palsson, "now that we have gained a greater understanding of this process in E. coli, developing similar simulations of other organisms should take less time."


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Using Computers, Scientists Successfully Predict Evolution Of E. Coli Bacteria." ScienceDaily. ScienceDaily, 15 November 2002. <www.sciencedaily.com/releases/2002/11/021115065518.htm>.
National Science Foundation. (2002, November 15). Using Computers, Scientists Successfully Predict Evolution Of E. Coli Bacteria. ScienceDaily. Retrieved April 20, 2015 from www.sciencedaily.com/releases/2002/11/021115065518.htm
National Science Foundation. "Using Computers, Scientists Successfully Predict Evolution Of E. Coli Bacteria." ScienceDaily. www.sciencedaily.com/releases/2002/11/021115065518.htm (accessed April 20, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, April 20, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Newsy (Apr. 20, 2015) Five years on, the possible environmental impact of the Deepwater Horizon spill includes a sustained die-off of bottlenose dolphins, among others. Video provided by Newsy
Powered by NewsLook.com
Five Years Later, the BP Oil Spill Is Still Taking Its Toll

Five Years Later, the BP Oil Spill Is Still Taking Its Toll

AFP (Apr. 20, 2015) On April 20, 2010, an explosion and fire on the Deepwater Horizon rig in the Gulf of Mexico started the biggest oil spill in US history. BP recently reported the Gulf is recovering well, but scientists paint a different picture. Duration: 02:36 Video provided by AFP
Powered by NewsLook.com
Thai Customs Seize African Elephant Tusks Worth $6 Mn

Thai Customs Seize African Elephant Tusks Worth $6 Mn

AFP (Apr. 20, 2015) Thai customs seize four tonnes of African elephant ivory worth $6 million at a Bangkok port in a container labelled as beans. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Un-Bee-Lievable: Bees on the Loose After Washington Truck Crash

Un-Bee-Lievable: Bees on the Loose After Washington Truck Crash

Reuters - US Online Video (Apr. 17, 2015) A truck carrying honey bees overturns near Lynnwood, Washington, spreading boxes of live bees across the highway. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins