Featured Research

from universities, journals, and other organizations

Molting Habits May Have Led To Extinction Of Trilobite

Date:
November 25, 2002
Source:
Michigan State University
Summary:
Molting, that periodic ritual in which arthropods shed and replace their outer skeletons, can be a dangerous time for the creatures. Just ask the trilobite. Research published by a Michigan State University paleontologist suggests that an inconsistent molting style, coupled with inefficient physiology, contributed to the demise of these prehistoric relatives of today's crabs and lobsters nearly 250 million years ago.

Molting, that periodic ritual in which arthropods shed and replace their outer skeletons, can be a dangerous time for the creatures. Just ask the trilobite.

Related Articles


Research published by a Michigan State University paleontologist suggests that an inconsistent molting style, coupled with inefficient physiology, contributed to the demise of these prehistoric relatives of today's crabs and lobsters nearly 250 million years ago.

"They would shed their old exoskeleton any way they could," said Danita Brandt, a faculty member in MSU's Department of Geological Sciences whose findings were published in the Australian paleontology journal Alcheringa. "They had to improvise."

On the other hand, today's modern arthropods molt the very same way every time. The same suture opens every time, letting the animal out.

"When the same technique is used, there is less of a chance that things will go wrong," she said. "Molting is a very dangerous time for an arthropod. A lot of things can go wrong."

Brandt's proposed connection between arthropod molting and evolutionary fate is based on two pieces of evidence: the inconsistency of molting patterns that characterize trilobites, in contrast to the consistent patterns seen in modern arthropods; and her observation that certain trilobites that had fewer body segments tended to live longer -- evolutionarily speaking -- then those that had many segments.

"Trilobites with fewer segments probably had a lower risk of molting-related accidents, and may have shed their old exoskeleton more quickly," she said. "These are traits of modern arthropods that act to minimize the period during which the animals are vulnerable to predators."

Brandt also noted that trilobite molting differed from molting in modern arthropods in another potentially important way: many modern arthropods resorb minerals from the old exoskeleton or consume their molted exoskeleton, thus conserving resources.

"There is no evidence that trilobites used these conservation strategies," she said. "Apparently trilobites were faced with the considerable task of rebuilding a heavily calcified skeleton 'from scratch' with each molt."

At one time, trilobites were one of the more evolutionary successful animals to roam the early world's oceans. The crab-like creatures, some of which were as small as a fingernail while others were nearly a foot long, thrived, especially during the Cambrian Period. It was at the end of the Paleozoic Era that the trilobite disappeared.

For years the trilobite's extinction had been blamed on a sudden increase in the numbers of trilobite predators. Fossil records show that the number of trilobites began to drop as other aquatic animals, such as fish and squid, began to increase.

"But it's highly unlikely that predators ever eliminated an entire group," Brandt said. "Another argument against predation alone is that other arthropods continue to thrive even today despite the proliferation of predator groups."

Other theories linked to trilobite extinction include climate change, sea-level fluctuation, and even the effects of meteorite impact. However, the correlation between these possible causes and the pattern of trilobite extinctions is not consistent, Brandt said.

"I think there is a biological 'wild card' that complicates the correlation of trilobite extinction with environmental factors, and for the trilobites I think that wild card was the unique challenge they faced during molting," she said.


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Cite This Page:

Michigan State University. "Molting Habits May Have Led To Extinction Of Trilobite." ScienceDaily. ScienceDaily, 25 November 2002. <www.sciencedaily.com/releases/2002/11/021125072153.htm>.
Michigan State University. (2002, November 25). Molting Habits May Have Led To Extinction Of Trilobite. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2002/11/021125072153.htm
Michigan State University. "Molting Habits May Have Led To Extinction Of Trilobite." ScienceDaily. www.sciencedaily.com/releases/2002/11/021125072153.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins