Featured Research

from universities, journals, and other organizations

Jupiter-Like Planets Formed In Hundreds – Not Millions – Of Years, Study Shows

Date:
December 2, 2002
Source:
University Of Washington
Summary:
An accepted assumption in astrophysics holds that it takes more than 1 million years for gas giant planets such as Jupiter and Saturn to form from the cosmic debris circling a young star. But new research suggests such planets form in a dramatically shorter period, as little as a few hundred years.

An accepted assumption in astrophysics holds that it takes more than 1 million years for gas giant planets such as Jupiter and Saturn to form from the cosmic debris circling a young star. But new research suggests such planets form in a dramatically shorter period, as little as a few hundred years.

The forming planets have to be able to survive the effects of nearby stars burning brightly, heating and dispersing the gases that accumulate around the giant planets. If the process takes too long, the gases will be dissipated by the radiation from those stars, said University of Washington astrophysicist Thomas R. Quinn.

"If a gas giant planet can't form quickly, it probably won't form at all," he said.

The standard model of planet formation holds that the spinning disk of matter, called a protoplanetary disk, that surrounds a young star gradually congeals into masses that form the cores of planets. That process was thought to take a million years or so, and then the giants gradually accumulate their large gaseous envelopes over perhaps another 1 million to 10 million years.

But the new research, culled from a much-refined mathematical model, suggests that the protoplanetary disk begins to fragment after just a few spins around its star. As the disk fragments, clusters of matter begin to form quickly and immediately start to draw in the gases that form vapor shrouds around gas giants.

"If these planets can't form quickly, then they should be a relatively rare phenomenon, whereas if they form according to this mechanism they should be a relatively common phenomenon," said Quinn, a UW research assistant astronomy professor.

The existence of gas giant planets, it turns out, seems to be fairly common. Since the mid-1990s, researchers have discovered more than 100 planets, generally from the mass of Jupiter to 10 times that size, orbiting stars outside the solar system. Those planets were deduced by their gravitational effect on their parent stars, and their discovery lends credence to the new research, Quinn said.

Lucio Mayer, a former UW post-doctoral researcher who recently joined the University of Zurich, is lead author of a paper detailing the work, published in the Nov. 29 edition of Science. Besides Quinn, co-authors are James Wadsley of McMaster University, Hamilton, Ontario, Canada, and Joachim Stadel at the University of Victoria, British Columbia, Canada. Their work is supported by grants from the National Science Foundation and the National Aeronautics and Space Administration's Astrobiology Institute.

Since the early 1950s, some scientists have entertained the notion that gas giant planets were formed quickly. However, the model, using a specialized fluid dynamics simulation, had never been refined enough to show what it does now. The Mayer-Quinn team spent the better part of two years refining calculations and plugging them into the model to show what would happen to a protoplanetary disk over a longer time.

"The main criticism people had of this model was that it wasn't quite ready yet," Quinn said. "Nobody was making any predictions out of it, but here we are making predictions out of it."

The new model explains why two other giant planets in our system, Uranus and Neptune, don't have gas envelopes like Jupiter and Saturn, Quinn said. At the time those planets were being formed, the solar system was part of a star cluster. The outer planets of Uranus and Neptune were too close to a nearby star – one that has since migrated away – and therefore lost whatever gas envelopes they might have accumulated.

Neither the new model nor the standard model accounts for why most of the gas giant planets found outside the solar system are much nearer their suns than are Jupiter and Saturn, Quinn said. The most common belief currently is that the planets formed farther away from their stars and then migrated inward to the positions where they have been discovered.

The new model also doesn't account for the formation of terrestrial planets, like Earth and Mars, near our sun. But Quinn suspects that perhaps the smaller terrestrial planets were formed over longer periods by processes described by the standard planet-formation model, while the new model explains how the larger gas giants came to be.

"That's my bet at the moment," he said.


Story Source:

The above story is based on materials provided by University Of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University Of Washington. "Jupiter-Like Planets Formed In Hundreds – Not Millions – Of Years, Study Shows." ScienceDaily. ScienceDaily, 2 December 2002. <www.sciencedaily.com/releases/2002/12/021202072553.htm>.
University Of Washington. (2002, December 2). Jupiter-Like Planets Formed In Hundreds – Not Millions – Of Years, Study Shows. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2002/12/021202072553.htm
University Of Washington. "Jupiter-Like Planets Formed In Hundreds – Not Millions – Of Years, Study Shows." ScienceDaily. www.sciencedaily.com/releases/2002/12/021202072553.htm (accessed September 18, 2014).

Share This



More Space & Time News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boeing, SpaceX to Send Astronauts to Space Station

Boeing, SpaceX to Send Astronauts to Space Station

AFP (Sep. 17, 2014) — NASA selected Boeing and SpaceX on Tuesday to build America's next spacecraft to carry astronauts to the International Space Station (ISS) by 2017, opening the way to a new chapter in human spaceflight. Duration: 01:13 Video provided by AFP
Powered by NewsLook.com
East Coast Treated To Rare Meteor Sighting

East Coast Treated To Rare Meteor Sighting

Newsy (Sep. 16, 2014) — Numerous residents along the East Coast reported seeing a bright meteor flash through the sky Sunday night. Video provided by Newsy
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
NASA Picks Boeing and SpaceX to Ferry Astronauts

NASA Picks Boeing and SpaceX to Ferry Astronauts

AP (Sep. 16, 2014) — NASA is a giant step closer to launching Americans again from U.S. soil. It has announced it has picked Boeing and SpaceX to transport astronauts to the International Space Station in the next few years. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins