Featured Research

from universities, journals, and other organizations

Nanoparticles Could Aid Biohazard Detection, Computer Industry

Date:
December 12, 2002
Source:
Purdue University
Summary:
Nanotechnology could make life easier for computer manufacturers and tougher for terrorists, reports a Purdue University research team. A group led by Jillian Buriak has found a rapid and cost-effective method of forming tiny particles of high-purity metals on the surface of advanced semiconductor materials such as gallium arsenide.

WEST LAFAYETTE, Ind. -- Nanotechnology could make life easier for computer manufacturers and tougher for terrorists, reports a Purdue University research team.

A group led by Jillian Buriak has found a rapid and cost-effective method of forming tiny particles of high-purity metals on the surface of advanced semiconductor materials such as gallium arsenide. While the economic benefits alone of such a discovery would be good news to chip manufacturers, who face the problem of connecting increasingly tiny computer chips with macro-sized components, the group has taken their research a step further.

The scientists also have learned how to use these nanoparticles as a bridge to connect the chips with organic molecules. Biosensors based on this development could lead to advances in the war on terrorism.

"We have found a way to connect the interior of a computer with the biological world," said Buriak, associate professor of chemistry in Purdue's School of Science. "It is possible that this discovery will enable chips similar to those found in computers to detect biohazards such as bacteria, nerve gas or other chemical agents."

The research, which appears in today's (Wednesday, 12/11) issue of Nano Letters, sprang from the team's desire to attach metals to semiconductors in precise locations.

Computer chips, commonly made of silicon, contain circuits that are far smaller than those made from metal wires. But for an impulse from a keyboard or mouse to reach the microchip, the electronic signal must pass from a large wire onto the chip's surface. The delicate interface between the macro and micro world is often accomplished by a tiny connection made of gold, chosen frequently over alternatives such as copper or silver, because it does not corrode in air. Gold's advantages have made it the first choice for designers, though until now such advantages have come at a steep economic price.

"Gold works great once you actually get it onto the chip," said Lon Porter, a chemistry graduate student in Buriak's group. "But by traditional manufacturing methods you need to begin with expensive, very high-purity gold. With our method, however, you'd no longer need the high-quality gold you might find in coins in Fort Knox -- you could use the low-purity gold waste swept up from the coin factory floor."

In their purest forms, precious metals such as gold and platinum are among the most coveted substances in the world. But these metals are more commonly found in nature as part of low-purity compounds like metal salts -- which, despite their name, are not salts you would use to flavor food or make a snowy roadway safe for driving. The amount of precious metals in these salts is low to begin with; when the salts are dissolved in liquid at the concentration that Buriak's group needs to form nanoparticles, a test tube full of the solution is worth only pennies. But despite the low market value of the chemical solutions themselves, the effect Buriak's group has discovered may nonetheless prove to be a gold mine.

"All you need to do to form nanoparticles is dip the semiconductor into the solution and wait," Porter said. "Though you begin with a solution worth less than the change in your pocket, you still end up with a layer of gold nanoparticles on the silicon that has the same purity as gold bullion. Because the reaction sustains itself, manufacturers would not need any special training or equipment to use it. From both a manpower and a technical perspective, the process is a real money saver."

The particles grow larger with increased time in the solution and eventually cover the semiconductor base with a bumpy coating. The roughness of the coating gives the base a greater surface area than it had by itself, a realization which led to the team's second breakthrough.

"It's similar to the way your brain packs a lot of surface area into the limited space inside your skull by folding in on itself many times," Porter said. "But the advantage we found for computer chips is not that we can increase their 'thinking power,' per se. Rather, the resulting rough surface gives us a lot of nooks and crannies in which to secure a second group of molecules atop the gold -- organic molecules that react in the presence of other chemicals."

The upshot of this double-layering is that the organic molecules could be chosen for their ability to react to the presence of nerve gas or biological contaminants. If a dangerous chemical reacted with an organic molecule, the metal nanoparticles could convey a signal downward to the chip that a biohazard was present.

"When a chemical reaction takes place, a small but measurable electrical change takes place," Porter said. "As metals are excellent conductors of electricity, nanoparticles could be the bridge that we need to make computers interface with the biological world."

Further refinement of their techniques has allowed the group to deposit nanoparticles of gold, platinum and other metals in specific areas of the semiconductor's surface. Rather than a film that blankets the entire surface, the group can deposit the particles in a grid pattern or even draw lines with a microscopic "pen." These refinements could allow manufacturers to put their discoveries to use comparatively rapidly.

"We are not sure what application of our discoveries will appear first," Buriak said. "But there are many semiconductor companies out there that spend a lot of money on chip interfacing, and we expect they could all take advantage of this technique somehow."

This research was funded in part by the National Science Foundation.

Buriak's group is affiliated with Purdue's new Birck Nanotechnology Center, scheduled for completion in the fall of 2004. A dozen groups associated with the center are pursuing research topics such as microscopic machines, advanced materials and artificial organs.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Nanoparticles Could Aid Biohazard Detection, Computer Industry." ScienceDaily. ScienceDaily, 12 December 2002. <www.sciencedaily.com/releases/2002/12/021212075914.htm>.
Purdue University. (2002, December 12). Nanoparticles Could Aid Biohazard Detection, Computer Industry. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2002/12/021212075914.htm
Purdue University. "Nanoparticles Could Aid Biohazard Detection, Computer Industry." ScienceDaily. www.sciencedaily.com/releases/2002/12/021212075914.htm (accessed September 23, 2014).

Share This



More Matter & Energy News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Company Copies Keys From Photos

Company Copies Keys From Photos

Newsy (Sep. 22, 2014) A new company allows customers to make copies of keys by simply uploading a couple of photos. But could it also be great for thieves? Video provided by Newsy
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com
Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Inside London's Massive Sewer Tunnel Project

Inside London's Massive Sewer Tunnel Project

AP (Sep. 22, 2014) Billions of dollars are being spent on a massive super sewer to take away London's vast output of waste, which is endangering the River Thames. (Sept. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins