Featured Research

from universities, journals, and other organizations

Researchers Achieve Germline Transmission Of 'Gene Knockdown' In Mice

Date:
January 20, 2003
Source:
Cold Spring Harbor Laboratory
Summary:
RNA interference (RNAi) has emerged as an extremely versatile and powerful tool in biomedical research. A new study published in the February issue of Nature Structural Biology reports the creation of transgenic mice in which inherited RNAi lowers or silences the expression of a target gene, producing a stable "gene knockdown." This finding extends the power of RNAi to genetic studies in live animals, and has far-reaching implications for the study and treatment of many human diseases.

RNA interference (RNAi) has emerged as an extremely versatile and powerful tool in biomedical research. A new study published in the February issue of Nature Structural Biology reports the creation of transgenic mice in which inherited RNAi lowers or silences the expression of a target gene, producing a stable "gene knockdown." This finding extends the power of RNAi to genetic studies in live animals, and has far-reaching implications for the study and treatment of many human diseases.

To adapt RNAi for the study of gene function in mice, Thomas Rosenquist of Stony Brook University and Greg Hannon of Cold Spring Harbor Laboratory used genetic engineering to create mouse embryonic stem cells in which RNAi was targeted to a particular gene. (As Hannon and his colleagues established in a previous study, silencing a gene of interest through RNAi can be efficiently achieved by engineering a second gene that encodes short hairpin RNA molecules corresponding to the gene of interest.)

These stem cells were injected into mouse embryos, and chimeric animals were born. Matings of these chimeric mice produced offspring that contained the genetically engineered RNAi-inducing gene in every cell of their bodies.

When Rosenquist, Hannon, and their colleagues examined tissues from the transgenic mice, they found that expression of the gene of interest was significantly reduced everywhere they looked (e.g. liver, heart, spleen). Such a reduction in gene expression is called a "gene knockdown" to distinguish it from traditional methods that involve "gene knockouts" or the complete deletion of a DNA segment from a chromosome.

One advantage of the RNAi-based gene knockdown strategy, shown in this study to work in whole animals, is that in future incarnations, the strategy can be modified to silence the expression of genes in specific tissues, and it can be designed to be switched on and off at any time during the development or adulthood of the animal. These and other features of the strategy, as well as combining it with drug discovery and other methods, should enable scientists to uncover a great deal of information about how genes influence many normal and pathological processes.

Although the current study targeted a gene thought to be involved in DNA repair, any gene would have sufficed as a target to demonstrate proof of principle as this study has done.

The creation of germline transgenic mice with heritable RNAi opens the door to the manipulation of gene activity in living animals for many applications.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Cold Spring Harbor Laboratory. "Researchers Achieve Germline Transmission Of 'Gene Knockdown' In Mice." ScienceDaily. ScienceDaily, 20 January 2003. <www.sciencedaily.com/releases/2003/01/030120100216.htm>.
Cold Spring Harbor Laboratory. (2003, January 20). Researchers Achieve Germline Transmission Of 'Gene Knockdown' In Mice. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2003/01/030120100216.htm
Cold Spring Harbor Laboratory. "Researchers Achieve Germline Transmission Of 'Gene Knockdown' In Mice." ScienceDaily. www.sciencedaily.com/releases/2003/01/030120100216.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins