Featured Research

from universities, journals, and other organizations

Researchers Develop 'Natural Bandages' That Mimic Body's Healing Process

Date:
February 11, 2003
Source:
American Chemical Society
Summary:
With the same compound the body uses to clot blood, scientists at Virginia Commonwealth University have created a nano-fiber mat that could eventually become a "natural bandage." Spun from strands of fibrinogen 1,000 times thinner than a human hair, the fabric could be placed on a wound and never taken off — minimizing blood loss and encouraging the natural healing process.

With the same compound the body uses to clot blood, scientists at Virginia Commonwealth University have created a nano-fiber mat that could eventually become a "natural bandage." Spun from strands of fibrinogen 1,000 times thinner than a human hair, the fabric could be placed on a wound and never taken off — minimizing blood loss and encouraging the natural healing process.

Related Articles


The research will be reported in the Feb. 12 print edition of Nano Letters, a peer-reviewed journal of the American Chemical Society, the world's largest scientific society.

"If you were bleeding and a paramedic came up to you on the street, what would he do?" asks Gary Bowlin, Ph.D., a professor of biomedical engineering at VCU and lead author of the paper. "He'd probably whip out a gauze, slap it on and hold pressure on it. When you get to the hospital, they're going to rip that gauze off and start the bleeding all over again."

The new mat could be placed directly on the bleeding site to start the clotting process, then, depending on the nature and severity of the wound, it could be left there to promote healing and eventually be absorbed by the body, according to the researchers. It could potentially be used for anything from a minor cut to a battlefield wound, where it is vital to stop bleeding immediately while waiting for transport to a distant hospital.

"Or sometimes in surgery there are small bleeders that surgeons can't control," Bowlin says. "In this case, they can just take a small piece of this mat, slap it down, stop the bleeding and leave it. Similar to what people use when they cut themselves shaving — just put a little dab on there and it's done."

The researchers made the mat out of fibrinogen, a natural compound found in the bloodstream. When you get cut, your body activates its clotting mechanism — a cascade of reactions where fibrinogen is broken down and converted to fibrin. "Fibrin is the meshwork, the netting," Bowlin says. "It's like throwing a net over the clot that holds it together and keeps it from dissolving quickly." After the clot is formed and stabilized by the fibrin meshwork, that same meshwork sets the stage for the natural healing processes.

To make the fibers, the researchers used a technique called electrospinning. The process begins with a solution of fibrinogen attached to a nozzle, which is then pointed at a metal target. An electric field is created between the nozzle and the target, and it is gradually increased until the force of the electric field overcomes the surface tension of the solution. This forms a liquid jet that is transformed into a dry fiber before it reaches the target.

The solution is made with a high concentration that causes the polymer chains to intertwine. Instead of breaking into droplets just after the jet forms (which occurs in electrospray ionization — a similar technique that earned a Nobel Prize in chemistry last year for another VCU researcher, John Fenn), the jet continues as a continuous liquid stream. By the time it hits the target, the solvent has largely evaporated and fibers are formed.

"When the jet comes out, the polymer chains are all tangled up and help to form the fiber, just like if you were to pour a boiling pot of spaghetti into a strainer," Bowlin says. "If you let it sit there for a minute, then grab a piece of spaghetti and try to lift it, a bunch of them come out together. The same thing is happening here."

"The key is that we're making these fibers at basically the same dimensions you would find in a natural clot," Bowlin continues. "So when the body sees it, it sees it as normal, and it's going to promote normal things to happen." Natural fibrinogen fibers form in the body at diameters between 82 and 91 nanometers, and the researchers have closely mimicked these dimensions by creating fibers of about 80 nanometers in diameter, Bowlin says. For reference, the average human hair is about 100,000 nanometers in diameter.

The researchers have successfully made the mats in a wide range of sizes using this technique. The texture of the material is akin to that of a flannel shirt, Bowlin says. They have also used electrospinning to make synthetic blood vessels from collagen that are six times smaller than those available to doctors now. These are just two of the many potential applications for this technology, according to Bowlin.

VCU has licensed this technology to NanoMatrix, Inc., and both the process and products are protected by pending United States and international patents.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. "Researchers Develop 'Natural Bandages' That Mimic Body's Healing Process." ScienceDaily. ScienceDaily, 11 February 2003. <www.sciencedaily.com/releases/2003/02/030211072313.htm>.
American Chemical Society. (2003, February 11). Researchers Develop 'Natural Bandages' That Mimic Body's Healing Process. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2003/02/030211072313.htm
American Chemical Society. "Researchers Develop 'Natural Bandages' That Mimic Body's Healing Process." ScienceDaily. www.sciencedaily.com/releases/2003/02/030211072313.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins