Featured Research

from universities, journals, and other organizations

New Measurements Show Silicon Nanospheres Rank Among Hardest Known Materials

Date:
March 21, 2003
Source:
National Science Foundation
Summary:
University of Minnesota researchers have made the first-ever hardness measurements on individual silicon nanospheres and shown that the nanospheres' hardness falls between the conventional hardness of sapphire and diamond, which are among the hardest known materials. Being able to measure such nanoparticle properties may eventually help scientists design low-cost superhard materials from these nanoscale building blocks.

ARLINGTON, Va. -- University of Minnesota researchers have made the first-ever hardness measurements on individual silicon nanospheres and shown that the nanospheres' hardness falls between the conventional hardness of sapphire and diamond, which are among the hardest known materials. Being able to measure such nanoparticle properties may eventually help scientists design low-cost superhard materials from these nanoscale building blocks.

Related Articles


Up to four times harder than typical silicon--a principal ingredient of computer chips, glass and sand--the nanospheres demonstrate that other materials at the nanoscale, including sapphire, may also have vastly improved mechanical properties. The researchers' results were published online March 18 by the Journal of the Mechanics and Physics of Solids and will appear in June 2003 issue. The work is supported by the National Science Foundation (NSF), the independent federal agency that supports basic research in all fields of science and engineering.

"These results give us two reasons to be excited," said William Gerberich, chemical engineering and materials science professor at Minnesota and lead author on the paper along with his graduate student William Mook. "We can now look at the properties of these building blocks, and from there, we can begin to design superhard materials. In addition, we've now achieved a way to conduct experiments on a nanoscale particle and perform atom-by atom supercomputer simulations on a similarly sized particle."

Such nanospheres might find early applications in rugged components of micro-electromechanical systems (MEMS), according to Gerberich. To produce a small gear, for example, the shape could be etched into a silicon wafer and filled with a composite including silicon carbide or silicon nitride nanospheres. The surrounding silicon could then be selectively etched away.

To make the measurements, the research team first devised a method for producing defect-free silicon nanospheres in which the silicon spheres condensed out of a stream of silicon tetrachloride vapor onto a sapphire surface. (Defects in the spheres reduce the hardness by acting as sites for flow or fracture.) The hardness was measured by squeezing individual particles between a diamond-tipped probe and the sapphire.

The smaller the sphere, the harder it was. The spheres tested ranged in size from 100 nanometers to 40 nanometers in diameter, and the corresponding hardness ranged from 20 gigapascals up to 50 gigapascals for the smallest nanospheres. For comparison, stainless steel has a hardness of 1 gigapascal, sapphire of about 40 gigapascals, and diamond of around 90 gigapascals. Bulk silicon averages about 12 gigapascals.

"People have never had these perfect, defect-free spheres to test before," Gerberich said. "You can compare the silicon nanospheres to materials such as nitrides and carbides, which typically have hardness values in the range of 30 to 40 gigapascals." The research team will study silicon carbide nanospheres next, but they'll need two diamond surfaces for the experiments, since squeezing a silicon carbide nanosphere would likely drill a hole into sapphire.

"This is the first time that a measurement of mechanical, rather than electromagnetic, properties of nanoparticles has been made, which we can now compare to the results of simulations," Gerberich said. "Mechanical properties of materials at this scale are much more difficult to simulate than electromagnetic properties."

A silicon sphere with a 40-nanometer diameter has approximately 40 million atoms. The spheres examined by the Minnesota researchers were composed of 5 million to 600 million atoms. Because materials science algorithms can simulate this number of atoms on supercomputers, the Minnesota team worked with Michael Baskes of Los Alamos National Laboratory to conduct some preliminary simulations, which corresponded well with the experimental findings.

"Better designs for these sorts of nanocomposites will be based on a better understanding of what goes into them," Gerberich said. "These measurements make it possible to pursue a bottom-up approach to materials design from a mechanical perspective."


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "New Measurements Show Silicon Nanospheres Rank Among Hardest Known Materials." ScienceDaily. ScienceDaily, 21 March 2003. <www.sciencedaily.com/releases/2003/03/030321075140.htm>.
National Science Foundation. (2003, March 21). New Measurements Show Silicon Nanospheres Rank Among Hardest Known Materials. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2003/03/030321075140.htm
National Science Foundation. "New Measurements Show Silicon Nanospheres Rank Among Hardest Known Materials." ScienceDaily. www.sciencedaily.com/releases/2003/03/030321075140.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Reuters - News Video Online (Jan. 25, 2015) In a glow of bonhomie, U.S. President Barack Obama and Indian Prime Minister Narendra Modi unveil a deal aimed at unlocking billions of dollars in nuclear trade. Pavithra George reports. Video provided by Reuters
Powered by NewsLook.com
NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins