Featured Research

from universities, journals, and other organizations

Nanotechnology May Help Overcome Current Limitations Of Gene Therapy

Date:
April 22, 2003
Source:
Northwestern University
Summary:
Scientists from Northwestern University and Argonne National Laboratory have created a hybrid "nanodevice" composed of a "scaffolding" of titanium oxide nanocrystals attached with snippets of DNA that may one day be used to target defective genes that play a role in cancer, neurological disease and other conditions.

Scientists from Northwestern University and Argonne National Laboratory have created a hybrid "nanodevice" composed of a "scaffolding" of titanium oxide nanocrystals attached with snippets of DNA that may one day be used to target defective genes that play a role in cancer, neurological disease and other conditions.

The titanium oxide nanocrystals, which are less than a few billionths of a meter in diameter and are the same material used in artificial hips and knees, may provide the ideal means of overcoming current limitations of gene therapy, such as adverse reactions to genetically modified viruses used as vehicles to deliver genes into cells, according to researchers Tatjana Paunesku and Gayle Woloschak of Northwestern University.

Paunesku is research assistant professor of radiology, and Woloschak is professor of radiology at the Feinberg School of Medicine at Northwestern University. They are both researchers at The Robert H. Lurie Comprehensive Cancer Center of Northwestern University and at Argonne National Laboratory.

In experiments described in the May online version of Nature Materials, the research team showed that nanocomposites not only retain the individual physical and biological activity of titanium oxide and of DNA, but, importantly, also possess the unique property of separating when exposed to light or x-rays.

For example, researchers would attach to the titanium oxide scaffolding a strand of DNA that matches a defective gene within a cell and introduce the nanoparticle into the nucleus of the cell, where the DNA would bind with its "evil twin" DNA strand to form a double-helix molecule.

The scientists would then expose the nanoparticle to light or x-rays, which would snip off the defective gene. "We call it a 'Swiss army knife' because, unlike today's drugs, we can inject 10 kinds of good genes all at once and target them in extremely specific or extremely broad ways," Paunesku said.

The titanium oxide "scaffolding" also is amenable to attaching other molecules, for example, navigational peptides, or proteins, which, like viral vectors, can help the nanoparticles home in on the cell nucleus.

The research group's work is still in the early stages of development, and testing in a laboratory model is at least two years away, Woloschak said.

Also working on this project were Natasa Stojicevic, of the Feinberg School, and Tijana Rajh, Marion Thurnauer, Jorg Maser, Stefan Vogt, Gary Wiederrect, Miroslava Protic, Barry Lai and Jeremy Oryhon of Argonne National Laboratory.

This study was supported by grants from the National Institutes of Health and from the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Nanotechnology May Help Overcome Current Limitations Of Gene Therapy." ScienceDaily. ScienceDaily, 22 April 2003. <www.sciencedaily.com/releases/2003/04/030422075516.htm>.
Northwestern University. (2003, April 22). Nanotechnology May Help Overcome Current Limitations Of Gene Therapy. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2003/04/030422075516.htm
Northwestern University. "Nanotechnology May Help Overcome Current Limitations Of Gene Therapy." ScienceDaily. www.sciencedaily.com/releases/2003/04/030422075516.htm (accessed September 22, 2014).

Share This



More Health & Medicine News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins