Featured Research

from universities, journals, and other organizations

Georgia Tech Researchers Use Lab Cultures To Control Robotic Device

Date:
April 28, 2003
Source:
Georgia Institute Of Technology
Summary:
The Hybrot, a small robot that moves about using the brain signals of a rat, is the first robotic device whose movements are controlled by a network of cultured neuron cells.

The Hybrot, a small robot that moves about using the brain signals of a rat, is the first robotic device whose movements are controlled by a network of cultured neuron cells.

Related Articles


Steve Potter and his research team in the Laboratory for Neuroengineering at the Georgia Institute of Technology are studying the basics of learning, memory, and information processing using neural networks in vitro. Their goal is to create computing systems that perform more like the human brain.

Potter, a professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, presented his most recent findings last month during the Third International Conference on Substrate-Integrated Microelectrodes in Texas.

As the lead researcher on a $1.2 million grant from the National Institutes of Health, Potter is connecting laboratory cultures containing living neurons to computers in order to create a simulated animal, which he describes as a "neurally-controlled animat."

"We call it the 'Hybrot' because it is a hybrid of living and robotic components," he said. "We hope to learn how living neural networks may be applied to the artificial computing systems of tomorrow. We also hope that our findings may help cases in which learning, memory, and information processing go awry in humans."

The team uses networks of cultured rodent brain cells as the Hybrot's brain, and has essentially given the cultured neural networks a body in the form of a mobile robot. Potter's group hopes the research will lead to advanced computer systems that could some day assist in situations where humans have lost motor control, memory or information processing abilities. The neural interfacing techniques they are developing could be used with prosthetic limbs directly controlled by the brain. Advances in neural control and information processing theory could have application, for example, in cars that drive themselves or new types of computing architectures.

Inside Potter's lab, a droplet containing a few thousand living neurons from rat cortex is placed on a special glass petri dish instrumented with an array of 60 micro-electrodes. The neurons are kept alive in an incubator for up to two years using a new sealed-dish culture system that Potter developed and patented. The neural activity recorded by the electrodes is transmitted to the robot, the Khepera, made by K-Team S.A, which serves as the body of the cultured networks. It moves under the command of neural activity that is being transmitted to it, and information from the robot's sensors is sent back to the cultured net in the form of electrical stimuli.

Central to the experiments is Potter's belief that over time, the team will be able to establish a living network system that learns like the human brain.

The team is able to make detailed observations of the neural signaling patterns, and document changes in the morphology and connectivity of the cells and networks by using high-speed cameras and voltage-sensitive dyes, in conjunction with 2-photon laser-scanning microscopy. The team is looking for evidence that the networks are growing and learning over time.

"Learning is often defined as a lasting change in behavior, resulting from experience," Potter said. "In order for a cultured network to learn, it must be able to behave. By using multi-electrode arrays as a two-way interface to cultured mammalian cortical networks, we have given these networks an artificial body with which to behave."


Story Source:

The above story is based on materials provided by Georgia Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute Of Technology. "Georgia Tech Researchers Use Lab Cultures To Control Robotic Device." ScienceDaily. ScienceDaily, 28 April 2003. <www.sciencedaily.com/releases/2003/04/030428082503.htm>.
Georgia Institute Of Technology. (2003, April 28). Georgia Tech Researchers Use Lab Cultures To Control Robotic Device. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2003/04/030428082503.htm
Georgia Institute Of Technology. "Georgia Tech Researchers Use Lab Cultures To Control Robotic Device." ScienceDaily. www.sciencedaily.com/releases/2003/04/030428082503.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gas Production Cut on Earthquake Fears

Gas Production Cut on Earthquake Fears

Reuters - Business Video Online (Mar. 5, 2015) — The Dutch government has cut production at Europe&apos;s largest gas field in Groningen amid concerns over earthquakes which are damaging local churches. As Amy Pollock reports the decision - largely politically-motivated - could have big economic conseqeunces. Video provided by Reuters
Powered by NewsLook.com
Star Wars-Inspired Prototype Creates Holographic Display

Star Wars-Inspired Prototype Creates Holographic Display

Reuters - Innovations Video Online (Mar. 5, 2015) — A prototype holographic display named Leia - after the Star Wars princess who appeared in holographic form asking Obi-Wan Kenobu for help - is demonstrated at the Mobile World Congress in Barcelona. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
IKEA and Samsung Launch Embedded Wireless Charging Range

IKEA and Samsung Launch Embedded Wireless Charging Range

Reuters - Innovations Video Online (Mar. 5, 2015) — Samsung and IKEA hope their new embedded wireless charging products, launched at Barcelona&apos;s Mobile World Congress, will tempt consumers eager for plugless power. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Samsung Unveils $30,000 'Dream Doghouse'

Samsung Unveils $30,000 'Dream Doghouse'

Buzz60 (Mar. 5, 2015) — On display at the Crufts dog show in England, the &apos;dog kennel of the future&apos; comes with features like a doggie treadmill and Samsung tablet. Mike Janela (@mikejanela) has more. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins