Featured Research

from universities, journals, and other organizations

Anthrax Genome Decoded

Date:
May 1, 2003
Source:
NIH/National Institute Of Allergy And Infectious Diseases
Summary:
The complete genetic blueprint of Bacillus anthracis--the microbe that gained notoriety during the 2001 anthrax mail attacks--is now known, researchers announced today. A formidable bioterrorist threat and the cause of potentially fatal inhalational anthrax, B. anthracis differs very little from the common soil bacterium that is its near relative, the scientists discovered.

The complete genetic blueprint of Bacillus anthracis--the microbe that gained notoriety during the 2001 anthrax mail attacks--is now known, researchers announced today. A formidable bioterrorist threat and the cause of potentially fatal inhalational anthrax, B. anthracis differs very little from the common soil bacterium that is its near relative, the scientists discovered. Those genetic differences are enough to give B. anthracis its disease-causing properties and may also give scientists valuable clues to its vulnerabilities.

The team of researchers supported by the National Institute of Allergy and Infectious Diseases (NIAID) and other federal agencies was led by Claire M. Fraser, Ph.D., and Timothy Read, Ph.D., at The Institute of Genomic Research in Rockville, MD. The complete sequence of the 5.2 million base pairs of the DNA in B. anthracis' single chromosome is published in the May 1 issue of Nature.

"The pace of microbial genomics research continues to be rapid; B. anthracis is just the latest of dozens of important human pathogens to be sequenced," notes NIAID Director Anthony S. Fauci, M.D. "As ever more precise details emerge about the genetic make-up of these organisms, our ability to design effective drugs and vaccines against the diseases they cause is greatly improved," he adds. To date, NIAID has supported sequencing efforts for more than 30 medically important microbes, many of which cause infectious diseases or are potential bioterror agents (see http://www.niaid.nih.gov/dmid/genomes).

Dr. Read and his colleagues compared an isolate of the Ames strain of B. anthracis with two closely related Bacillus bacteria. "There is remarkably little difference among these genomes," says Dr. Read. "In the 5,000 or more genes we analyzed, we found only 150 or so significant differences."

Dr. Read and his coworkers found a number of genes encoding proteins that B. anthracis may need to enter its host's cells. These could provide targets for drugs designed against the organism, says Dr. Read.

Unlike its near relatives, B. anthracis possesses genes that give it the ability to thrive on protein-rich matter such as the decaying animal bodies it frequently grows on, the scientists discovered. Their analysis also found that B. anthracis has an enhanced capacity to scavenge iron, which it may use to survive in its host.

Using techniques of comparative genomics, the investigators gleaned several clues about the possible evolutionary pathway taken by B. anthracis ancestors. The similarities between certain B. anthracis genes and those of microbes that infect insects, for example, suggest that a recent ancestor of B. anthracis may have infected insects. Of note is a similarity between one gene of Yersinia pestis, which causes plague in mammals and can also infect insects, and a gene in B. anthracis, which infects only mammals.

NIAID supported the anthrax sequencing through the pathogen functional genomics resource center at TIGR. This initiative, launched by NIAID in 2001, trains researchers in the latest techniques in functional genomics. It also serves as a reagent repository. The center's resources are available to the scientific community through online and other services. Besides NIAID, support for the anthrax sequencing effort came from the United States Office of Naval Research, the Department of Energy and the United Kingdom's Defense Sciences Technology Laboratory.

NIAID is a component of the National Institutes of Health (NIH), which is an agency of the Department of Health and Human Services. NIAID supports basic and applied research to prevent, diagnose, and treat infectious and immune-mediated illnesses, including HIV/AIDS and other sexually transmitted diseases, illness from potential agents of bioterrorism, tuberculosis, malaria, autoimmune disorders, asthma and allergies.

###

Reference: T Read et al. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:82-86 (2003).

The teleconference on Wednesday April 30 will include investigator Timothy Read, Ph.D., of TIGR; TIGR President Claire M. Fraser, Ph.D.; and Maria Y. Giovanni, Ph.D., assistant director for microbial genomics and related technology development at NIAID.

Press releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.


Story Source:

The above story is based on materials provided by NIH/National Institute Of Allergy And Infectious Diseases. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute Of Allergy And Infectious Diseases. "Anthrax Genome Decoded." ScienceDaily. ScienceDaily, 1 May 2003. <www.sciencedaily.com/releases/2003/05/030501075821.htm>.
NIH/National Institute Of Allergy And Infectious Diseases. (2003, May 1). Anthrax Genome Decoded. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2003/05/030501075821.htm
NIH/National Institute Of Allergy And Infectious Diseases. "Anthrax Genome Decoded." ScienceDaily. www.sciencedaily.com/releases/2003/05/030501075821.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins