Featured Research

from universities, journals, and other organizations

Bacteria Convert Food Processing Waste To Hydrogen

Date:
May 21, 2003
Source:
American Society For Microbiology
Summary:
Penn State environmental engineers estimate, based on tests with wastewater from small Pennsylvania food processors, that typical large food manufacturers could use their starch-rich wastewater to produce hydrogen gas worth close to $5 million or more each year. They present their findings today at the 103rd General Meeting of the American Society for Microbiology.

WASHINGTON, DC – May 20, 2003 – Penn State environmental engineers estimate, based on tests with wastewater from small Pennsylvania food processors, that typical large food manufacturers could use their starch-rich wastewater to produce hydrogen gas worth close to $5 million or more each year. They present their findings today at the 103rd General Meeting of the American Society for Microbiology.

Steven Van Ginkel, doctoral candidate, and Dr. Sang-Eun Oh, post-doctoral researcher in environmental engineering, conducted the tests.

"In addition to hydrogen, which can be used as a fuel and industrial feedstock, methane, the main component of natural gas, can be generated from the wastewaters," says Van Ginkel. Both hydrogen and methane can be converted into electricity via fuel cells at close to 80% efficiency. "By extracting hydrogen and methane from their wastewaters, these plants can also reap significant savings by not needing to aerate. Aeration makes up 20 to 80 percent of wastewater treatment costs."

Van Ginkel presented the Penn State team's findings in a poster, Turning America's Waste into Energy, today (May 20) at 9 a.m . His co-authors are Dr. Oh and Dr. Bruce Logan, director of the Penn State Hydrogen Energy Center and Kappe professor of environmental engineering.

In the tests, Van Ginkel and Oh added hydrogen-producing bacteria to samples of wastewater from the Pennsylvania food processors. The bacteria were obtained from ordinary soil collected at Penn State and then heat-treated to kill all bacteria except those that produce spores. Spores are a dormant, heat resistant, bacterial form adapted to survive in unfavorable environments but able to begin growing again in favorable conditions.

"The spores contain bacteria that can produce hydrogen and once they are introduced into the wastewater, they eat the food in the water and produce hydrogen in a normal fermentation process," says Van Ginkel.

Keeping the wastewater slightly acidic in the hydrogen production step helps to prevent any methane-producing bacteria from growing and consuming hydrogen.

After only a day of fermentation in oxygen-free or anaerobic conditions, the hydrogen-producing bacteria fill the headspace in the fermentation flasks with biogas containing 60 percent hydrogen and 40 percent carbon dioxide.

In the second stage of the process, the acidity in the wastewater is changed and methane-producing bacteria added. The bacteria eat the leftovers, grow and generate methane.

The solid material or sludge left over from fermentation is only one-fourth to one-fifth the volume from typical aerobic treatment processes.

"Using this continuous fermentation process, we can strip nearly all of the energy out of the wastewater in forms that people can use now. While this approach has high capital costs at the outset, our calculations show that it could pay off well both environmentally and financially for some food processors in the long run. In many instances, existing treatment plants can easily be retrofitted to produce hydrogen and methane at a much lower capital cost," says Van Ginkel.

###The research was supported by the National Science Foundation Biogeochemical Research Initiation Education grant.


Story Source:

The above story is based on materials provided by American Society For Microbiology. Note: Materials may be edited for content and length.


Cite This Page:

American Society For Microbiology. "Bacteria Convert Food Processing Waste To Hydrogen." ScienceDaily. ScienceDaily, 21 May 2003. <www.sciencedaily.com/releases/2003/05/030521092358.htm>.
American Society For Microbiology. (2003, May 21). Bacteria Convert Food Processing Waste To Hydrogen. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2003/05/030521092358.htm
American Society For Microbiology. "Bacteria Convert Food Processing Waste To Hydrogen." ScienceDaily. www.sciencedaily.com/releases/2003/05/030521092358.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins