Featured Research

from universities, journals, and other organizations

When Is A Metal Not A Metal? Niobium Clusters Display Non-metallic Properties At Ultra-cold Temperatures

Date:
May 23, 2003
Source:
Georgia Institute Of Technology
Summary:
The May 23 issue of the journal Science answers that question with an account of the surprising behavior exhibited by nanometer-scale clusters of the metal niobium. When the clusters are cooled to below 20 degrees Kelvin, electrical charges in them suddenly shift, creating structures known as dipoles.

The May 23 issue of the journal Science answers that question with an account of the surprising behavior exhibited by nanometer-scale clusters of the metal niobium. When the clusters are cooled to below 20 degrees Kelvin, electrical charges in them suddenly shift, creating structures known as dipoles.

"This is very strange, because no metal is supposed to be able to do this," said Walter de Heer, a professor in the School of Physics at the Georgia Institute of Technology and co-author of a paper to be published on the topic in Science. "These clusters become spontaneously polarized, with electrons moving to one side of the cluster for no apparent reason. One side of each cluster becomes negatively-charged, and the other side becomes positively-charged. The clusters lock into that behavior and stay that way."

This ferroelectric phenomenon has so far been observed in clusters of niobium, vanadium and tantalum – three transition metals that in bulk form become superconducting at about the same temperature that the researchers observe formation of dipoles in the tiny clusters. De Heer believes this discovery will open up a new field of research – and provide clues to the mystery of superconductivity.

In bulk metals – and even in niobium clusters at room temperature -- electrical charge is normally distributed equally throughout the sample unless an electric field is applied to them. But in the clusters of up to 200 niobium atoms created by de Heer and collaborators Ramiro Moro, Xiaoshan Xu and Shuangye Yin, that changes when the particles are cooled to less than 20 degrees Kelvin.

The Georgia Tech researchers discovered this "spontaneous symmetry breaking" while searching for signs of superconductivity in the nanometer-scale clusters. It was completely unexpected – and de Heer admits he has no explanation for it.

"When this happens, these particles that are made out of metal atoms no longer behave as if they were metallic," he said. "Something changes the particles from a metal into something else."

For the smallest clusters, the strength of the dipole effect varies dramatically according to size. Clusters composed of 14 atoms display strong effects, while those made up of 15 atoms show little effect. Above 30 atoms, clusters with even numbers of atoms display stronger dipole effects than clusters with odd numbers of atoms.

"Structure matters greatly to this process," de Heer said. "A small change can affect the position of the phase transition rather profoundly, and the exact arrangement of atoms really does matter to these systems."

He attributes the size sensitivity to the quantum size regime, which is related to restrictions on how electrons can move in very small clusters.

De Heer sees strong "circumstantial evidence," but no solid proof, that the phenomenon is connected to superconductivity in these metals.

"Our assumption is that superconductivity in the bulk materials has something to do with the spontaneous production of dipole in the small particles," he said. "At this point, it is circumstantial evidence – the same materials and the same temperature regime, and the odd phase transitions occurring in both. By studying several different metals, we found that those that are superconducting in bulk have this effect, and those that are not superconducting do not have it. That strengthens our belief that this is connected to superconductivity in some way that we don't yet understand."

To produce and study the tiny clusters, the researchers use a custom-built apparatus that includes a laser, large vacuum chamber, liquid helium and a specially designed detector able to count and characterize several million particles per hour.

First, a laser beam is aimed at a niobium rod held within the vacuum chamber. Pulses from the laser vaporize the niobium, creating a cloud of metallic vapor. A stream of very cold helium gas is then injected into the chamber, causing the niobium gas to condense into particles of varying sizes. Under pressure from the ultra-cold helium, the particles exit through a small hole in the chamber's wall, creating a one millimeter-wide jet of particles that passes between two metal plates before hitting the detector.

At intervals one minute apart, the metal plates are energized with 15,000 volts, creating a strong electrical field. The field interacts with the polarized niobium nanoclusters, causing them to be deflected away from the detector. Unpolarized clusters remain in the beam and are counted by the detector

By comparing detector readings while the plates are energized against the readings when no field is applied, the researchers learn which clusters carry the dipole. The continuous production of particles allows de Heer's research team to gather data on millions of particles during each experiment. By varying the temperature and voltage, they study the impact of these changes on the effect.

So far, they have studied in detail clusters of up to 200 atoms, though de Heer believes the effect should continue in larger clusters, perhaps up to 500 atoms or as many as 1,000.

"This is just the beginning of what will ultimately be a very exciting story," he said. "We certainly have a lot of work to do.


Story Source:

The above story is based on materials provided by Georgia Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute Of Technology. "When Is A Metal Not A Metal? Niobium Clusters Display Non-metallic Properties At Ultra-cold Temperatures." ScienceDaily. ScienceDaily, 23 May 2003. <www.sciencedaily.com/releases/2003/05/030523080101.htm>.
Georgia Institute Of Technology. (2003, May 23). When Is A Metal Not A Metal? Niobium Clusters Display Non-metallic Properties At Ultra-cold Temperatures. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2003/05/030523080101.htm
Georgia Institute Of Technology. "When Is A Metal Not A Metal? Niobium Clusters Display Non-metallic Properties At Ultra-cold Temperatures." ScienceDaily. www.sciencedaily.com/releases/2003/05/030523080101.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins