Science News
from research organizations

Computer Simulations Mimic Growth Of 'Dizzy Dendrites'

Date:
June 25, 2003
Source:
National Institute Of Standards And Technology
Summary:
Crystals are more than just pretty faces. Many of the useful properties associated with metal alloys or polymer blends -- like strength, flexibility and clarity -- stem from a material's specific crystal microstructure. So the more scientists know about how crystal patterns grow as a material solidifies, the better they'll be able to create new materials with specific properties.
Share:
         
Total shares:  
FULL STORY

Crystals are more than just pretty faces. Many of the useful properties associated with metal alloys or polymer blends -- like strength, flexibility and clarity -- stem from a material's specific crystal microstructure. So the more scientists know about how crystal patterns grow as a material solidifies, the better they'll be able to create new materials with specific properties.

In a recent issue of Nature Materials, National Institute of Standards and Technology (NIST) researchers described work with collaborators in Hungary and France using computer simulations of crystal growth to advance understanding of how foreign particles -- either additives or impurities -- affect crystal growth patterns. They found that computer simulations developed to predict the crystal growth of metal alloys matched up remarkably well with microscope images of actual crystals grown in polymer films with thicknesses far below that of a human hair.

Randomly dispersed foreign particles in both the simulation and the real materials produced what the researchers dubbed "dizzy dendrites." In both cases, the tree-like branches in the crystals tend to curve and split, instead of forming the straight, symmetric patterns typical of pure crystals. Further simulations indicated that rotating the particles in concert during the solidification process produced spiraling dendrites.

Alternating strips of particles with first one and then another orientation produced zig-zagging patterns. The researchers suggest that experimentalists also may be able to reproduce the crystal patterns seen in these more complex simulations.

Possible methods include imprinting the crystal growing surface with a patterned roller (like those used to make a patterned pie crust) or using external electromagnetic fields or laser pulses to orient particles in specific directions.


Story Source:

The above story is based on materials provided by National Institute Of Standards And Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute Of Standards And Technology. "Computer Simulations Mimic Growth Of 'Dizzy Dendrites'." ScienceDaily. ScienceDaily, 25 June 2003. <www.sciencedaily.com/releases/2003/06/030625090002.htm>.
National Institute Of Standards And Technology. (2003, June 25). Computer Simulations Mimic Growth Of 'Dizzy Dendrites'. ScienceDaily. Retrieved April 26, 2015 from www.sciencedaily.com/releases/2003/06/030625090002.htm
National Institute Of Standards And Technology. "Computer Simulations Mimic Growth Of 'Dizzy Dendrites'." ScienceDaily. www.sciencedaily.com/releases/2003/06/030625090002.htm (accessed April 26, 2015).

Share This Page:


Matter & Energy News
April 26, 2015

Latest Headlines
updated 12:56 pm ET