Featured Research

from universities, journals, and other organizations

Evolutionary 'Fast-Track,' In Which The Hunted Outwit Their Hunters, Could Explain Why Human Diseases Progress So Rapidly

Date:
July 17, 2003
Source:
Cornell University
Summary:
In the fishbowl of life, when hordes of well-fed predators drive their prey to the brink of extinction, sometimes evolution takes the fast track to help the hunted survive -- and then thrive to outnumber their predators.

ITHACA, N.Y. -- In the fishbowl of life, when hordes of well-fed predators drive their prey to the brink of extinction, sometimes evolution takes the fast track to help the hunted survive -- and then thrive to outnumber their predators.

This rapid evolution, predicted by Cornell University biologists in computer models and demonstrated with Pac-Man-like creatures and their algae food in laboratory habitats called chemostats, could play an important role in the ecological dynamics of many predator-prey systems, according to an article in the latest issue (July 17, 2003) of the journal Nature .

Physicians, the Cornell biologists say, should keep this rapid evolution in mind when investigating interactions between diseases and victims. As one example, they say, it is useful in trying to understand how HIV, the AIDS virus, manages to evolve so swiftly that development of improved vaccines is extremely difficult.

"Evolution is not just about dinosaurs and apes, but it can occur much more rapidly than we previously thought. Rapid evolution is pervasive, and the list of examples is growing," says Takehito Yoshida, a postdoctoral research fellow in Cornell's Department of Ecology and Evolutionary Biology and lead author of the Nature article. Yoshida demonstrated the evolutionary principle with near-microscopic, multicelled animals called rotifers that live to gobble much tinier green algae. He notes, "We humans are part of complex ecosystems, and if we think we're above the effects of evolution, we're not looking close enough. If we want to understand epidemics and outbreaks of insects such as gypsy moths, we should not ignore the effect of evolution."

Other Cornell authors of the Nature report, illustrated with a cover photo of a rotifer-eating algae and the headline "Fast Food," are Laura E. Jones, a postdoctoral researcher, and Stephen P. Ellner, a professor of ecology and evolutionary biology, who conducted computer modeling of predator-prey dynamics; Gregor F. Fussmann, a postdoctoral researcher during the experiments and now a biologist at the University of Potsdam, Germany; and Nelson G. Hairston Jr., professor of ecology and evolutionary biology. The studies were supported by a grant from the Mellon Foundation.

The rotifers, Brachionas calyciflorus , and the algae, Chlorella vulgaris , were chosen for the experiment because they are the standard, well-documented "lab rats of freshwater predator-prey studies," Hairston says. The eaters and the eaten lived together for months in transparent glass chemostats stocked with nutrients (for the algae) and water.

The Hairston research group had noticed that the highs and lows of predator and prey populations in the chemostats were occurring completely "out of phase," says Yoshida. When rotifer populations were very high -- because previously they had plenty of algae to eat, algal populations hit rock bottom, because they had been consumed almost out of existence. The opposite occurred when algae were super-abundant: There were almost no rotifers around to eat them. Hairston and his collaborators were seeing weeks go by between the very pronounced oscillations in predator and prey populations.

Computer models developed by Ellner and graduate student Kyle Shertzer predicted that only evolution on the part of the prey could account for the out-of-phase, prolonged oscillation effect. Jones and Ellner refined the models to make detailed predictions about the effects of prey evolution, and Yoshida and Fussmann ran experiments in chemostats under two kinds of conditions: In one, all the single-cell algae were genetically identical clones -- essentially one-trick ponies that could not evolve their way out of a tough situation; in the second, the algal population was genetically varied so that somewhere among their tiny green gene pool might be an evolutionary innovation or two that could save them.

After running the chemostats for months and counting predator and prey populations day by day, the computer model's prediction proved correct. Populations of a single algal clone quickly rose and fell almost in synchrony with the numbers of rotifers. But the algae with some genetic variation to draw on enjoyed longer periods when they were abundant and their predators were few -- along with agonizingly long periods when they struggled to rebuild their populations.

Instead of millions of years, the algae were evolving in a few weeks. But exactly how had they changed?

"We're not sure," Hairston says. "We think that somehow they made themselves indigestible. They figured out how to pass straight through the rotifer gut without being digested and survived to make lots more of themselves. Rapid evolution got them out of a tight spot."

In one respect the joke is on the fast-evolving algae, Hairston notes, because they had to give up something to become indigestible: They became slow-growing algae relative to their kin. As a result, the next time they compete for food resources, the slow-growing, hard-to-eat algae will be at a disadvantage, and the more edible algae will thrive, allowing the cycle to repeat indefinitely.

Ellner suggests that this cycle of rapid evolution -- between defense and vulnerability -- could have parallels in human diseases. "There's hardly anyone left in our [human] population who had resistance or developed it during the 1918 flu epidemic," he says. "Perhaps the time is now ripe for a return of those strains or their relatives."

Jones sees some hope that medical researchers will come to recognize the role of rapid evolution. "HIV is evolving so quickly that researchers are struggling to make an effective vaccine. As we say in our report, evolution can substantially alter predator-prey dynamics. Attempts to understand population oscillations cannot afford to neglect the potential effects of ongoing, rapid evolution."


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Evolutionary 'Fast-Track,' In Which The Hunted Outwit Their Hunters, Could Explain Why Human Diseases Progress So Rapidly." ScienceDaily. ScienceDaily, 17 July 2003. <www.sciencedaily.com/releases/2003/07/030717090213.htm>.
Cornell University. (2003, July 17). Evolutionary 'Fast-Track,' In Which The Hunted Outwit Their Hunters, Could Explain Why Human Diseases Progress So Rapidly. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2003/07/030717090213.htm
Cornell University. "Evolutionary 'Fast-Track,' In Which The Hunted Outwit Their Hunters, Could Explain Why Human Diseases Progress So Rapidly." ScienceDaily. www.sciencedaily.com/releases/2003/07/030717090213.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins