Featured Research

from universities, journals, and other organizations

UCLA Astronomers Detect Plasma At Black Hole

Date:
September 8, 2003
Source:
University Of California - Los Angeles
Summary:
UCLA astronomers report they have detected remarkably stormy conditions in the hot plasma being pulled into the monstrous black hole residing at the center of our Milky Way galaxy, 26,000 light years away.

UCLA astronomers report they have detected remarkably stormy conditions in the hot plasma being pulled into the monstrous black hole residing at the center of our Milky Way galaxy, 26,000 light years away. This detection of the hot plasma is the first in an infrared wavelength, where most of the disturbed plasma's energy is emitted, and was made using the 10-meter Keck II Telescope at the W.M. Keck Observatory in Hawaii.

Plasma is a hot, ionized, gas-like matter -- a fourth state of matter, distinct from solids, liquids and gases -- believed to make up more than 99 percent of the visible universe, including the stars, galaxies and the vast majority of the solar system.

"Previous observations at radio and X-ray wavelengths suggested that the black hole is dining on a calm stream of plasma that experiences glitches only 2 percent of the time," said Andrea Ghez, professor of physics and astronomy at UCLA, who headed the research team. "Our infrared detection shows for the first time that the black hole's meal is more like the Grand Rapids, in which energetic glitches from shocked gas are occurring almost continually."

"I see this as a real breakthrough," said Mark Morris, a UCLA professor of physics and astronomy, who worked with Ghez. "It's a big leap, not just an incremental advance. The infrared is precisely where we need to look to learn what the black hole is eating. In the infrared, you see it all. The black hole's dirty laundry is hanging right there for us to see. We're peering deep down inside this tumultuous region."

"One of the big mysteries in studies of the black hole at the center of our galaxy is why the surrounding gas is emitting so little light compared to black holes at the center of other galaxies," Ghez said. "We now have a completely new and continuously open window to study the material that is falling onto the black hole at the center of the Milky Way."

The past two years, Ghez and her colleagues used adaptive optics at the Keck Observatory to get high-resolution images at wavelengths between the short near-infrared, where stars dominate, and the mid-infrared, where dust dominates.

"There's a history of false detections of this source in the infrared," Ghez said. "At short wavelengths, it's challenging because there are so many stars. In the mid-infrared, it's difficult because there is so much dust at the center of the galaxy. Our observation was successful because it was made between these two problematic regimes with an adaptive optics system. This type of observation only became possible last year."

"We are highly confident in our detection," Ghez added. "We have a bright source at exactly the right spot, right on the black hole, and with properties that are unlike the stars around it; the source emits much more strongly at long wavelengths than the stars, and the source doesn't move, while the stars move at huge velocities. What's exciting and important is not just that we detected the plasma, but that it varies dramatically in intensity from week-to-week, day-to-day, and even within a single hour. It's as if we have been watching the black hole breathing."

Black holes are collapsed stars so dense that nothing can escape their gravitational pull, not even light. Black holes cannot be seen directly, but their influence on nearby stars is visible, and provides a signature, Ghez said. The black hole, with a mass more than three million times that of our sun, is in the constellation of Sagittarius.

Since 1995, Ghez has been using the W.M. Keck Observatory's 10-meter Keck I Telescope atop Mauna Kea in Hawaii -- the world's largest optical and infrared telescope -- to study the galactic center and the movement of 200 nearby stars. She has made measurements using a technique she refined called infrared speckle interferometry, and for the last few years, has used adaptive optics, an even more sophisticated technique, which enables her to see the region more clearly.

"The Keck Observatory is one of the best facilities in the world for this research," Ghez said.

The astronomers know the location of the black hole so precisely "that it's like someone in Los Angeles who can identify where someone in Boston is standing to within the width of her hand, if you scale it out to 26,000 light years," Ghez said. The galactic center is located due south in the summer sky.

The black hole at the center of our galaxy came into existence billions of years ago, perhaps as very massive stars collapsed at the end of their life cycles and coalesced into a single, supermassive object.

For decades, the emission at the galactic center could be detected only in radio wavelengths, which do not reveal the variations in intensity. "The radio is partially opaque," Morris said. The emission was detected for the first time recently in the X-way wavelengths, but it is important to now have the detection between these two wavelength extremes, where details of the plasma can be seen. In the X-ray, activity can be seen only about 5 percent of the time, while in the infrared, it can be seen continually, Morris said.

The astronomers are learning what is causing gas to emit radiation as it approaches and enters the black hole. Ghez and her colleagues will continue to study the supermassive black hole at a variety of near infrared wavelengths.

Ghez's co-authors include Morris; UCLA physics and astronomy professor Eric Becklin, who identified the center of the Milky Way in 1968; California Institute of Technology research scientist Keith Matthews, and UCLA graduate student Shelley Wright.

###

The research is federally funded by an individual grant to the National Science Foundation, the National Science Foundation's Center for Adaptive Optics, and the Packard Foundation. It has been submitted for publication to the Astrophysical Journal Letters and is available at http://xxx.lanl.gov/abs/astro-ph/0309076. Ghez also will present her findings Sept. 24 in an invited talk at the 4th Cologne-Bonn-Zermatt Symposium on The Dense Interstellar Medium in Galaxies in Zermatt, Switzerland.

Ghez provides more information, images and movies, at http://www.astro.ucla.edu/research/galcenter/.


Story Source:

The above story is based on materials provided by University Of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - Los Angeles. "UCLA Astronomers Detect Plasma At Black Hole." ScienceDaily. ScienceDaily, 8 September 2003. <www.sciencedaily.com/releases/2003/09/030905072028.htm>.
University Of California - Los Angeles. (2003, September 8). UCLA Astronomers Detect Plasma At Black Hole. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2003/09/030905072028.htm
University Of California - Los Angeles. "UCLA Astronomers Detect Plasma At Black Hole." ScienceDaily. www.sciencedaily.com/releases/2003/09/030905072028.htm (accessed April 24, 2014).

Share This



More Space & Time News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Reuters - US Online Video (Apr. 23, 2014) A group of space explorers say the chance of a city-obliterating asteroid striking Earth is higher than scientists previously believed. Deborah Gembara reports. Video provided by Reuters
Powered by NewsLook.com
Nuclear-Level Asteroids Might Be More Common Than We Realize

Nuclear-Level Asteroids Might Be More Common Than We Realize

Newsy (Apr. 23, 2014) The B612 Foundation says asteroids strike Earth much more often than previously thought, and are hoping to build an early warning system. Video provided by Newsy
Powered by NewsLook.com
Two US Astronauts Step out on Spacewalk for ISS Repairs

Two US Astronauts Step out on Spacewalk for ISS Repairs

AFP (Apr. 23, 2014) Two US astronauts stepped out on a brief spacewalk Wednesday to install a backup computer at the International Space Station after one failed earlier this month. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
NASA Chief Outlines Plan for Human Mission to Mars

NASA Chief Outlines Plan for Human Mission to Mars

AFP (Apr. 22, 2014) NASA administrator Charles Bolden, speaking at the 'Human to Mars Summit' in Washington, says that learning more about the Red Planet can help answer the 'fundamental question' of 'life beyond Earth'. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins