Featured Research

from universities, journals, and other organizations

Sphingosine Kinase Inhibitors May Hold Key To Halting Growth Of Some Tumors

Date:
September 15, 2003
Source:
Penn State
Summary:
Penn State College of Medicine researchers have identified compounds that could wipe out an enzyme responsible for tumor growth. "These compounds our team found are the first 'drug-like' agents that have been shown to inhibit an enzyme called sphingosine kinase," said Charles D. Smith, Ph.D., professor of pharmacology, and director of the Drug Discovery Core, Penn State College of Medicine.

Penn State College of Medicine researchers have identified compounds that could wipe out an enzyme responsible for tumor growth.

"These compounds our team found are the first 'drug-like' agents that have been shown to inhibit an enzyme called sphingosine kinase," said Charles D. Smith, Ph.D., professor of pharmacology, and director of the Drug Discovery Core, Penn State College of Medicine. "Since sphingosine kinase is involved in growth regulation and certain other biological processes that are important in tumor growth, these compounds have potential use for the treatment of many types of cancer."

This study, titled, "Discovery and evaluation of inhibitors of human sphingosine kinase," appeared in the Sept. 15 issue of Cancer Research and was recently presented at two international scientific meetings. Smith's research team in the Department of Pharmacology included: Kevin J. French, Ph.D., Randy Schrecengost, Brian D. Lee, Yan Zhuang, Ph.D., Staci N. Smith, Justin L. Eberly, and Jong K. Yun, Ph.D., of the Jake Gittlen Cancer Research Institute.

Previous studies have shown that sphingosine kinase (SK) plays a pivotal role in regulating cell growth. Cell membranes contain sphingomyelin, a precursor of two lipids: ceramide, which causes programmed cell death (apoptosis), and sphingosine 1-phosphate (S1P), which causes cell proliferation. The balance of ceramide and S1P determine whether cells multiply or die.

A chain reaction with other enzymes can turn ceramide into sphingosine, which then reacts with SK to form S1P. This promotes cell proliferation, and stops the programmed cell death that would otherwise rid the body of the cancer cells. This study aimed to find a way to stop that chain reaction and create an effective option to treat cancer.

In this project, the Smith team first determined that the amount of mRNA for SK is significantly higher in tumor cells than it is in healthy cells. mRNA is genetic material that holds the information necessary to make SK protein and many other substances. For example, levels of mRNA that produce SK protein were two-fold higher in breast tumors than in healthy tissue. These results suggest that SK protein is important in promoting tumor growth and/or survival, and so may be an excellent target for new anticancer drugs.

Then the group screened about 16,000 compounds searching for inhibitors of SK. Four types of compounds were found to be very effective and were more potent than any other previously described SK inhibitors.

"These compounds are anti-proliferative in small concentrations and are effective against tumor cells that have shown resistance to other cancer therapies," Smith said. "Additionally, all of the compounds cause the tumor cells to undergo apoptosis. These effects are consistent with the hypothesized consequence of reducing S1P levels."

It was then necessary to determine if the new SK inhibitors do in fact promote anti-tumor activity in an intact animal. The group synthesized a variant of one of the inhibitors, and tested its effects on tumors growing in mice (following the procedures and protocols approved by the Animal Care and Use Committee of Penn State College of Medicine.) These studies showed that tumors in mice that were treated with the SK inhibitor had between 50 percent and 85 percent less growth than tumors in untreated animals. Importantly, there were no significant differences in the body weights of those animals treated with the SK inhibitor, suggesting that it was not toxic to the animals. Body weight decrease is one of the first ways an investigator might recognize toxicity of a new compound.

"Overall, these studies demonstrate that halting S1P production by targeting sphingosine kinase will stop tumor growth and cause the tumor cells to die," Smith said. "The compounds we have identified show promise for further development, and may lead to new targeted drugs for our arsenal to fight cancer."

This research was supported by a grant from the National Institutes of Health. Penn State University is pursuing patents for this technology.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Sphingosine Kinase Inhibitors May Hold Key To Halting Growth Of Some Tumors." ScienceDaily. ScienceDaily, 15 September 2003. <www.sciencedaily.com/releases/2003/09/030915072358.htm>.
Penn State. (2003, September 15). Sphingosine Kinase Inhibitors May Hold Key To Halting Growth Of Some Tumors. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2003/09/030915072358.htm
Penn State. "Sphingosine Kinase Inhibitors May Hold Key To Halting Growth Of Some Tumors." ScienceDaily. www.sciencedaily.com/releases/2003/09/030915072358.htm (accessed October 22, 2014).

Share This



More Health & Medicine News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
US to Track Everyone Coming from Ebola Nations

US to Track Everyone Coming from Ebola Nations

AP (Oct. 22, 2014) Stepping up their vigilance against Ebola, federal authorities said Wednesday that everyone traveling into the US from Ebola-stricken nations will be monitored for symptoms for 21 days. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Doctors Help Paralysed Man Walk Again, Patient in Disbelief

Doctors Help Paralysed Man Walk Again, Patient in Disbelief

AFP (Oct. 22, 2014) Polish doctors describe how they helped a paralysed man walk again, with the patient in disbelief at the return of sensation to his legs. Duration: 1:04 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins