Featured Research

from universities, journals, and other organizations

Sphingosine Kinase Inhibitors May Hold Key To Halting Growth Of Some Tumors

Date:
September 15, 2003
Source:
Penn State
Summary:
Penn State College of Medicine researchers have identified compounds that could wipe out an enzyme responsible for tumor growth. "These compounds our team found are the first 'drug-like' agents that have been shown to inhibit an enzyme called sphingosine kinase," said Charles D. Smith, Ph.D., professor of pharmacology, and director of the Drug Discovery Core, Penn State College of Medicine.

Penn State College of Medicine researchers have identified compounds that could wipe out an enzyme responsible for tumor growth.

"These compounds our team found are the first 'drug-like' agents that have been shown to inhibit an enzyme called sphingosine kinase," said Charles D. Smith, Ph.D., professor of pharmacology, and director of the Drug Discovery Core, Penn State College of Medicine. "Since sphingosine kinase is involved in growth regulation and certain other biological processes that are important in tumor growth, these compounds have potential use for the treatment of many types of cancer."

This study, titled, "Discovery and evaluation of inhibitors of human sphingosine kinase," appeared in the Sept. 15 issue of Cancer Research and was recently presented at two international scientific meetings. Smith's research team in the Department of Pharmacology included: Kevin J. French, Ph.D., Randy Schrecengost, Brian D. Lee, Yan Zhuang, Ph.D., Staci N. Smith, Justin L. Eberly, and Jong K. Yun, Ph.D., of the Jake Gittlen Cancer Research Institute.

Previous studies have shown that sphingosine kinase (SK) plays a pivotal role in regulating cell growth. Cell membranes contain sphingomyelin, a precursor of two lipids: ceramide, which causes programmed cell death (apoptosis), and sphingosine 1-phosphate (S1P), which causes cell proliferation. The balance of ceramide and S1P determine whether cells multiply or die.

A chain reaction with other enzymes can turn ceramide into sphingosine, which then reacts with SK to form S1P. This promotes cell proliferation, and stops the programmed cell death that would otherwise rid the body of the cancer cells. This study aimed to find a way to stop that chain reaction and create an effective option to treat cancer.

In this project, the Smith team first determined that the amount of mRNA for SK is significantly higher in tumor cells than it is in healthy cells. mRNA is genetic material that holds the information necessary to make SK protein and many other substances. For example, levels of mRNA that produce SK protein were two-fold higher in breast tumors than in healthy tissue. These results suggest that SK protein is important in promoting tumor growth and/or survival, and so may be an excellent target for new anticancer drugs.

Then the group screened about 16,000 compounds searching for inhibitors of SK. Four types of compounds were found to be very effective and were more potent than any other previously described SK inhibitors.

"These compounds are anti-proliferative in small concentrations and are effective against tumor cells that have shown resistance to other cancer therapies," Smith said. "Additionally, all of the compounds cause the tumor cells to undergo apoptosis. These effects are consistent with the hypothesized consequence of reducing S1P levels."

It was then necessary to determine if the new SK inhibitors do in fact promote anti-tumor activity in an intact animal. The group synthesized a variant of one of the inhibitors, and tested its effects on tumors growing in mice (following the procedures and protocols approved by the Animal Care and Use Committee of Penn State College of Medicine.) These studies showed that tumors in mice that were treated with the SK inhibitor had between 50 percent and 85 percent less growth than tumors in untreated animals. Importantly, there were no significant differences in the body weights of those animals treated with the SK inhibitor, suggesting that it was not toxic to the animals. Body weight decrease is one of the first ways an investigator might recognize toxicity of a new compound.

"Overall, these studies demonstrate that halting S1P production by targeting sphingosine kinase will stop tumor growth and cause the tumor cells to die," Smith said. "The compounds we have identified show promise for further development, and may lead to new targeted drugs for our arsenal to fight cancer."

This research was supported by a grant from the National Institutes of Health. Penn State University is pursuing patents for this technology.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Sphingosine Kinase Inhibitors May Hold Key To Halting Growth Of Some Tumors." ScienceDaily. ScienceDaily, 15 September 2003. <www.sciencedaily.com/releases/2003/09/030915072358.htm>.
Penn State. (2003, September 15). Sphingosine Kinase Inhibitors May Hold Key To Halting Growth Of Some Tumors. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2003/09/030915072358.htm
Penn State. "Sphingosine Kinase Inhibitors May Hold Key To Halting Growth Of Some Tumors." ScienceDaily. www.sciencedaily.com/releases/2003/09/030915072358.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins