Featured Research

from universities, journals, and other organizations

Brain Transportation System Defect Linked To Huntington's By UCSD Team

Date:
September 25, 2003
Source:
University Of California - San Diego
Summary:
Researchers at the University of California, San Diego (UCSD) School of Medicine have linked a defective protein in Huntington's disease to gridlock in the transportation system that moves signals and vital protein cargoes within the brain, eventually leading to neuron cell death.

Researchers at the University of California, San Diego (UCSD) School of Medicine have linked a defective protein in Huntington's disease to gridlock in the transportation system that moves signals and vital protein cargoes within the brain, eventually leading to neuron cell death.

Related Articles


Published in the September 25, 2003 issue of the journal Neuron, their studies in Drosophila, the fruit fly, showed that a protein called huntingtin is critical for normal neuronal transportation. When the protein is defective, however, it appears to physically blocks traffic in the narrow axons that are the long pipes of the nerve cells.

Although defective huntingtin genes have previously been linked to Huntington's disease, this is the first study to illustrate that the defective protein may cause neuronal damage by aggregating (sticking together) and blocking axonal traffic.

"These findings support our hypothesis that blockage of neuronal transportation is related to several neurodegenerative diseases," said the study's senior author, Lawrence S.B. Goldstein, Ph.D., UCSD professor of cellular and molecular medicine and a Howard Hughes Medical Institute investigator. "In a previous studies (Nature, Dec. 6, 2001 and Neuron, Nov. 8, 2001), we provided evidence that a protein linked to plaque accumulation in Alzheimer's disease is involved in brain cellular trafficking."

In the current study, the Goldstein team removed or reduced the normal huntingtin gene in fruit fly larva. As a result, they found that vesicle traffic up and down the axon was disrupted, indicating that huntingtin's normal function was related to the transport machinery.

Next, the researchers looked at the defective, or pathogenic version of the huntingtin protein, and of other proteins that cause polyglutamine diseases, which are neurodegenerative disorders similar to Huntington's disease. They found that the disease-causing versions of all these genes inhibited the transport machinery, while non-disease versions did not.

"There may be two things going on here," Goldstein said. "The aggregates encoded by the defective genes may be physically blocking traffic in these narrow pipes, like a plumbing problem. Or, the genes may be binding to components of the machinery, interfering with their normal function."

A devastating, degenerative brain disorder with no known treatment or cure, Huntington's disease causes brain deterioration, leading to an inability to walk, talk and reason. Huntington's disease, and the lesser known polyglutamine diseases, typically begin in adulthood and progress over 10 to 30 years.

The UCSD study was supported by a grant from the National Institutes of Health. The paper's first author was Shermali Guanwardena, Ph.D., UCSD Department of Cellular and Molecular Medicine. Additional authors were Lu-Shiun Her, Ph.D., Richard G. Brusch, B.A., Ingrid R. Niesman and Louis Sintasath, B.A., UCSD Department of Cellular and Molecular Medicine; Robert A. Laymon, M.S., UCSD Department of Cellular and Molecular Medicine and Howard Hughes Medical Institute; Beth Gordesky-Gold, Department of Biology, University of Pennsylvania; and Nancy M. Bonini, Ph.D., Howard Hughes Medical Institute and Department of Biology, University of Pennsylvania.


Story Source:

The above story is based on materials provided by University Of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - San Diego. "Brain Transportation System Defect Linked To Huntington's By UCSD Team." ScienceDaily. ScienceDaily, 25 September 2003. <www.sciencedaily.com/releases/2003/09/030925064722.htm>.
University Of California - San Diego. (2003, September 25). Brain Transportation System Defect Linked To Huntington's By UCSD Team. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2003/09/030925064722.htm
University Of California - San Diego. "Brain Transportation System Defect Linked To Huntington's By UCSD Team." ScienceDaily. www.sciencedaily.com/releases/2003/09/030925064722.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

AAA: Distracted Driving a Serious Teen Problem

AAA: Distracted Driving a Serious Teen Problem

AP (Mar. 25, 2015) While distracted driving is not a new problem for teens, new research from the AAA Foundation for Traffic Safety says it&apos;s much more serious than previously thought. (March 25) Video provided by AP
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Many Don't Know They Have Alzheimer's, But Their Doctors Do

Many Don't Know They Have Alzheimer's, But Their Doctors Do

Newsy (Mar. 24, 2015) According to a new study by the Alzheimer&apos;s Association, more than half of those who have the degenerative brain disease aren&apos;t told by their doctors. Video provided by Newsy
Powered by NewsLook.com
A Quick 45-Minute Nap Can Improve Your Memory

A Quick 45-Minute Nap Can Improve Your Memory

Newsy (Mar. 23, 2015) Researchers found those who napped for 45 minutes to an hour before being tested on information recalled it five times better than those who didn&apos;t. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins