Featured Research

from universities, journals, and other organizations

New Protein Provides Clue To Diabetes

Date:
October 20, 2003
Source:
Whitehead Institute For Biomedical Research
Summary:
Although cases of adult-onset diabetes have skyrocketed in the United States, researchers still don’t know much about the biological processes that predispose so many people to the disease. But in research published in the Oct. 16 issue of the journal Nature, scientists say they’ve found a protein that plays an essential role in regulating a cell’s ability to absorb glucose.

Although cases of adult-onset diabetes have skyrocketed in the United States, researchers still don’t know much about the biological processes that predispose so many people to the disease. But in research published in the Oct. 16 issue of the journal Nature, scientists say they’ve found a protein that plays an essential role in regulating a cell’s ability to absorb glucose, an important step toward gaining a better understanding of the underlying causes of diabetes.

Now that researchers know how this crucial protein reacts in normal cells, they can study how it functions in diabetic patients. The findings ultimately may lead to new drug targets for diabetes medications, says Harvey Lodish, a scientist at Whitehead Institute for Biomedical Research and co-author of the new study.

The researchers discovered the protein – which they call TUG – following a five-year search for molecules that control a glucose transporter named GLUT4, according to Jonathan Bogan, lead author on the paper and former scientist in both Lodish’s laboratory and the Diabetes Unit at Massachusetts General Hospital.

“This discovery has all the attributes of being extremely important to understanding, and maybe treating, Type 2 diabetes,” says Lodish.

Nearly 17 million Americans have Type 2 (adult-onset) diabetes, a disorder in which cells lose their ability to absorb glucose from the blood stream. This is different from Type 1 (juvenile onset) diabetes, in which the immune system attacks insulin-producing cells. Normally, when blood sugar levels rise, the pancreas secretes the hormone insulin, which travels through the blood and interacts with “receptors” on the surface of cells in muscle and fat, instructing the cells to absorb and store the excess glucose.

But in Type 2 diabetes, the cells become deaf to insulin’s signals, a condition known as insulin resistance. “No one really knows what causes it,” says Bogan, who now is an assistant professor at Yale University School of Medicine. “We don’t even know very much about how the process works in normal cells. Learning the normal process is the first step in learning more about insulin resistance.”

Key to this are glucose transporters, a class of proteins that shuttles glucose molecules through the membrane and into the body of the cell. The first glucose transporter was discovered in 1985 in Lodish’s lab. Several others, including GLUT4, have been discovered since then. While most glucose transporters reside at the cell surface, GLUT4 is usually deep inside the cell, only moving to the surface when insulin sends a signal. It is the only transporter that responds exclusively to the presence of insulin.

For the study, Bogan engineered GLUT4 proteins so that they contained two distinct fluorescent tags, and studied them in cultured fat cells. One tag glowed only when GLUT4 appeared at the cell surface. The other was detectable at any location in the cell, enabling Bogan to measure GLUT4 distribution within the cells. He then tested a collection of approximately 2.4 million proteins to see which ones had an effect on GLUT4 distribution.

“By using the tags,” Bogan says, “we were able to sift through all the cells and find this needle in a haystack.”

Bogan found that one protein, TUG, had a significant effect on GLUT4, acting as a tether that binds GLUT4 inside the cell. When insulin reaches the cell surface, it signals TUG to release GLUT4, which then moves to the cell surface to allow glucose absorption. These study results suggest that excess tethering may somehow contribute to insulin resistance.

Lodish proposes that discovering this key component of the GLUT4 pathway is a significant clue for possibly identifying a diabetes drug target. “Insulin shots just overwhelm the cell and hopefully make it respond to insulin,” he says. “But so far, there aren’t any drugs that act directly on this pathway. Now we can begin to speculate, for example, that a drug which blocks TUG might enhance a cell’s ability to absorb glucose. It’s an hypothesis, but an easy one to test.”

Joseph Avruch, professor at Harvard Medical School and chief of the diabetes unit at Massachusetts General Hospital, is no stranger to the world of diabetes research. “This is probably the most important discovery in the insulin glucose transport field that’s come along in years,” he says. “This is a big step in understanding how insulin resistance works, and opens the way to possibly getting around the impediments that exist in Type 2 diabetes.”

While Lodish continues to explore other molecular mechanisms of diabetes, Bogan is continuing the TUG research in his laboratory at Yale, identifying other proteins that interact with TUG and studying mice in which TUG has been genetically altered or deleted. Whitehead Institute and Massachusetts General Hospital own the patent for the technology used to discover TUG and are licensing it to pharmaceutical companies who are employing it in the search for diabetes drug targets.

Says Avruch, “TUG might turn out to be a target, or it might be the key that opens the door to understanding how the system works. Either way, this is still a very important step forward.”


Story Source:

The above story is based on materials provided by Whitehead Institute For Biomedical Research. Note: Materials may be edited for content and length.


Cite This Page:

Whitehead Institute For Biomedical Research. "New Protein Provides Clue To Diabetes." ScienceDaily. ScienceDaily, 20 October 2003. <www.sciencedaily.com/releases/2003/10/031020055649.htm>.
Whitehead Institute For Biomedical Research. (2003, October 20). New Protein Provides Clue To Diabetes. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2003/10/031020055649.htm
Whitehead Institute For Biomedical Research. "New Protein Provides Clue To Diabetes." ScienceDaily. www.sciencedaily.com/releases/2003/10/031020055649.htm (accessed September 30, 2014).

Share This



More Health & Medicine News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How 'Yes Means Yes' Defines Sexual Assault

How 'Yes Means Yes' Defines Sexual Assault

Newsy (Sep. 29, 2014) Aimed at reducing sexual assaults on college campuses, California has adopted a new law changing the standard of consent for sexual activity. Video provided by Newsy
Powered by NewsLook.com
Scientists May Have Found An Early Sign Of Pancreatic Cancer

Scientists May Have Found An Early Sign Of Pancreatic Cancer

Newsy (Sep. 29, 2014) Researchers looked at 1,500 blood samples and determined people who developed pancreatic cancer had more branched chain amino acids. Video provided by Newsy
Powered by NewsLook.com
Colo. Doctors See Cluster of Enterovirus Cases

Colo. Doctors See Cluster of Enterovirus Cases

AP (Sep. 29, 2014) Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com
Dr.'s Unsure of Cause of Fast-Spreading Virus

Dr.'s Unsure of Cause of Fast-Spreading Virus

AP (Sep. 29, 2014) Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins