Featured Research

from universities, journals, and other organizations

Researchers Use Glass Spheres To Tag And Trace Explosives

Date:
November 13, 2003
Source:
University Of Missouri-Rolla
Summary:
In work that may help law enforcement officials better identify terrorists, researchers at the University of Missouri-Rolla are using glass microspheres -- each about the width of a human hair -- to trace explosives back to their manufacturers.

In work that may help law enforcement officials better identify terrorists, researchers at the University of Missouri-Rolla are using glass microspheres -- each about the width of a human hair -- to trace explosives back to their manufacturers.

Dr. Delbert Day, Curators’ Professor emeritus of ceramic engineering and Dr. Paul Worsey, professor of mining engineering at UMR, are combining their talents in materials and explosives to create a more effective way for munitions manufacturers to identify where and when their explosives are made.

“With explosives we want to find out who is using them illegally by having some way to track them,” says Day. “If you know where and when the explosive was made, you can narrow down the number of suspects that might have purchased this explosive.”

The glass microsphere’s chemical composition becomes a signature and can provide the name of company, the plant location, and the day it was manufactured. “By controlling the chemical composition you can put this information inside the glass microsphere and only the manufacturer of the explosive has the code,” Day says.

The tag’s safety is a big concern as explosives are made of dangerous materials, Worsey says. Any material added to an explosive is carefully evaluated for fear that it may cause it to detonate prematurely or make it more dangerous.

“Our idea of using glass microspheres was based on the premise that they are already deliberately added to explosives to improve performance and have not caused a safety problem so they must be safe to use, so why not use them for a tag?” says Day.

Glasses are durable materials with a high melting temperature. Day says it’s unlikely that glass would react in a dangerous way because it’s an inorganic material -- unlike polymers -- which makes it less reactive. Polymers -- tiny chips of plastic -- are currently used to tag some explosives, but Day says they are less durable than glass microspheres.

“A glass is stable to much higher temperatures than most polymers, so there is a higher likelihood that a glass microsphere will survive an explosion compared to most polymers,” says Day.

The glass spheres already added to explosives are hollow, whereas the tags would be solid. Day says there is no evidence that using a solid sphere instead of a hollow one would cause any additional risk. The hollow glass spheres, or “microballoons,” are added to emulsion explosives because they make the explosive more effective, Days says.

After an explosive detonates, the tags -- solid glass microspheres -- are found in and around the explosion site. The microspheres are then detected using a variety of methods depending on what was added to the spheres when they were formed. For example, if a certain chemical is added, the microspheres will glow when exposed to low-level radiation. They can also be made magnetic. Then a magnet can be used at the explosion site to pick up the microspheres, says Worsey.

“In the field of taggants there are a lot of applications, with tagging explosives being just one. There is more interest in it now because of the terrorist activity,” says Day. Other possible applications include tagging the chemicals used to make drugs, land mines, credit cards, jewelry and electronic products.


Story Source:

The above story is based on materials provided by University Of Missouri-Rolla. Note: Materials may be edited for content and length.


Cite This Page:

University Of Missouri-Rolla. "Researchers Use Glass Spheres To Tag And Trace Explosives." ScienceDaily. ScienceDaily, 13 November 2003. <www.sciencedaily.com/releases/2003/11/031113070248.htm>.
University Of Missouri-Rolla. (2003, November 13). Researchers Use Glass Spheres To Tag And Trace Explosives. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2003/11/031113070248.htm
University Of Missouri-Rolla. "Researchers Use Glass Spheres To Tag And Trace Explosives." ScienceDaily. www.sciencedaily.com/releases/2003/11/031113070248.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins