Featured Research

from universities, journals, and other organizations

Study By UCSD Gives New Insight Into How Anthrax Bacteria Can Evade A Host's Immune Response

Date:
January 7, 2004
Source:
University Of California - San Diego
Summary:
Biologists at the University of California, San Diego have determined how toxin produced by anthrax bacteria blocks a person's normal immune response, a discovery that could lead to new treatments for anthrax infection.

Biologists at the University of California, San Diego have determined how toxin produced by anthrax bacteria blocks a person's normal immune response, a discovery that could lead to new treatments for anthrax infection. In a paper to be published in the January 15th issue of The Journal of Immunology the UCSD scientists show why, in the presence of anthrax toxin, human immune cells fail to respond normally to lipopolysaccharide--a component of the cell walls of many bacteria including the bacteria that cause anthrax, Bacillus anthracis. Bacterial invasion, or the presence of lipopolysaccharide, usually causes immune cells known as macrophages to release cytokines--chemicals that signal other cells about the presence of an invader. Release of cytokines causes large numbers of immune cells to arrive at the site of infection and destroy the bacteria. By blocking this host immune response, anthrax bacteria are able to multiply unchecked. According to the Centers for Disease Control, approximately 75 percent of people infected with inhalation anthrax die, even with all possible supportive care including appropriate antibiotics.

"Although it was known for quite some time that anthrax toxins can suppress cytokine production, the mechanism by which Bacillus anthracis escapes the immune response isn't really understood," says Michael David, a biology professor at UCSD who headed the research team. "We have identified a protein molecule targeted by the anthrax toxin and determined where it acts in the sequence of steps involved in immune response."

Macrophages have special receptors on their surfaces that bind to lipopolysaccharide. The binding of lipopolysaccharide to this receptor sets off a sequence of events inside the macrophage, in which a series of proteins activate one another in turn. This cascade of proteins activating one another ultimately turns on cytokine genes, causing the macrophage to churn out large quantities of cytokines.

It turns out that there are two separate, sometimes cooperating, routes in the cell by which series of proteins activate one another to switch on production of cytokines. One of the routes has been recognized for a long time, but researchers were sometimes puzzled when cytokine production was turned on or off without the proteins along this route being activated or deactivated. This puzzle was resolved when the David group and other groups simultaneously identified the second route, the IRF3 pathway. The anthrax toxin targets the IRF3 pathway by cleaving MKK6--one of the proteins in the series along the route. The cleavage of MKK6 prevents the cytokine genes from being switched on.

When the researchers made mutant macrophages with a variant of MKK6 that could not be cleaved by the anthrax toxin, these macrophages responded to lipopolysaccharide by producing cytokines even in the presence of the anthrax toxin. This suggests that developing a drug that could protect MKK6 and prevent anthrax toxin from cleaving it could help to prevent an anthrax infection from getting out of control. The anthrax bacteria would be unable to evade the normal immune response.

"While these results may not lead to a drug to cure anthrax in the next six months, the more you understand about bacteria and how they target the immune response the more options you have for developing drugs to treat the infections," says David.

Previous work by other researchers has suggested that anthrax toxin evades the immune system by killing macrophages; however, according to David, cell death does not fully explain how anthrax bacteria evade the immune system.

"Only some types of macrophages are killed by anthrax toxins, but anthrax toxins diminish the production of cytokines in all of the macrophages we have tested," David explains. "Also, less toxin is needed to shut off the immune response than to kill the macrophages."

###

The other UCSD researchers involved with this project were Oanh Dang, a former graduate student in the David laboratory and the first author of the paper; Lorena Navarro, a former graduate student in the David laboratory and first author on two other papers that initially identified the IRF3 immune response pathway; and Keith Anderson, a technician in the David laboratory. This work was supported by a grant from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University Of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - San Diego. "Study By UCSD Gives New Insight Into How Anthrax Bacteria Can Evade A Host's Immune Response." ScienceDaily. ScienceDaily, 7 January 2004. <www.sciencedaily.com/releases/2004/01/040107072134.htm>.
University Of California - San Diego. (2004, January 7). Study By UCSD Gives New Insight Into How Anthrax Bacteria Can Evade A Host's Immune Response. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2004/01/040107072134.htm
University Of California - San Diego. "Study By UCSD Gives New Insight Into How Anthrax Bacteria Can Evade A Host's Immune Response." ScienceDaily. www.sciencedaily.com/releases/2004/01/040107072134.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Revamps Ebola Guidelines After Criticism

CDC Revamps Ebola Guidelines After Criticism

Newsy (Oct. 21, 2014) The Centers for Disease Control and Prevention have issued new protocols for healthcare workers interacting with Ebola patients. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Vaccine Trials to Start a in January

WHO: Ebola Vaccine Trials to Start a in January

AP (Oct. 21, 2014) Tens of thousands of doses of experimental Ebola vaccines could be available for "real-world" testing in West Africa as soon as January as long as they are deemed safe in soon to start trials, the World Health Organization said Tuesday. (Oct. 21) Video provided by AP
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
CDC Issues New Ebola Guidelines for Health Workers

CDC Issues New Ebola Guidelines for Health Workers

Reuters - US Online Video (Oct. 21, 2014) The U.S. Centers for Disease Control and Prevention has set up new guidelines for health workers taking care of patients infected with Ebola. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins