Featured Research

from universities, journals, and other organizations

Gene-disabling Techniques Simplified By Stanford Team

Date:
January 15, 2004
Source:
Stanford University Medical Center
Summary:
Sometimes the first step to learning a gene's role is to disable it and see what happens. Now researchers at the Stanford University School of Medicine have devised a new way of halting gene expression that is both fast and cheap enough to make the technique practical for widespread use.

STANFORD, Calif. - Sometimes the first step to learning a gene's role is to disable it and see what happens. Now researchers at the Stanford University School of Medicine have devised a new way of halting gene expression that is both fast and cheap enough to make the technique practical for widespread use. This work will accelerate efforts to find genes that are involved in cancer and the fate of stem cells, or to find genes that make good targets for therapeutic drugs.

Related Articles


The technique, published in the February issue of Nature Genetics and now available online, takes advantage of small molecules called short interfering RNA, or siRNA, which derail the process of translating genes into proteins. Until now, these molecular newcomers in genetics research have been difficult and expensive to produce. Additionally, they could impede the activity of known genes only, leaving a swath of genes in the genetic hinterlands unavailable for study.

"siRNA technology is incredibly useful but it has been limited by expense and labor. A better method for generating siRNA has been needed for the whole field to move forward," said study leader Helen Blau, PhD, the Donald E. and Delia B. Baxter Professor of Pharmacology. She said some companies are in the process of creating pools, or libraries, of siRNA molecules for all known genes in specific organisms but these libraries aren't yet available.

Pathology graduate students George Sen, Tom Wehrman and Jason Myers became interested in creating siRNA molecules as a way of screening for genes that alter the fate of stem cells - cells that are capable of self-renewal and the primary interest of Blau's lab. The students hoped to block protein production for each gene to find out which ones play a critical role in normal stem cell function.

"I told them that creating individual siRNAs to each gene was too expensive," said Blau. Undaunted, the students came up with a protocol for making an siRNA library to obstruct expression of all genes in a given cell - including genes that were previously uncharacterized. They could then pull individual molecules like books from a shelf to test each one for a biological effect.

The team had several hurdles to overcome in developing their protocol. The first was a size limit - an siRNA molecule longer than 29 subunits causes wide-ranging problems in the cell. The key to overcoming this barrier was a newly available enzyme that snips potential siRNA molecules into 21-subunit lengths. A further step copied these short snippets into a form that could be inserted into a DNA circle called a plasmid. When the researchers put a single plasmid into a cell, it began churning out the gene-blocking siRNA molecule.

The group tested their approach by creating a handful of siRNA molecules to genetically disable three known genes. In each case, their technique generated siRNA that effectively blocked the gene in question. Wehrman said this technique of creating siRNA molecule libraries could be widely used to find genes that, when disabled, cause cells to become cancerous or alter how the cells respond to different drugs. These genes could then become potential targets for drugs to treat disease.

A paper in the same issue of Nature Genetics described a similar way of creating siRNA libraries. "Having two unrelated groups working on the same problem shows there has been a real need for the technology," Blau said. The Stanford group has filed a patent for its technique.

###

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children's Hospital at Stanford. For more information, please visit the Web site of the medical center's Office of Communication & Public Affairs at http://mednews.stanford.edu.


Story Source:

The above story is based on materials provided by Stanford University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University Medical Center. "Gene-disabling Techniques Simplified By Stanford Team." ScienceDaily. ScienceDaily, 15 January 2004. <www.sciencedaily.com/releases/2004/01/040115075138.htm>.
Stanford University Medical Center. (2004, January 15). Gene-disabling Techniques Simplified By Stanford Team. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2004/01/040115075138.htm
Stanford University Medical Center. "Gene-disabling Techniques Simplified By Stanford Team." ScienceDaily. www.sciencedaily.com/releases/2004/01/040115075138.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins