Featured Research

from universities, journals, and other organizations

New Study Shows How Black Holes Get Their 'Kicks'

Date:
February 5, 2004
Source:
Rochester Institute Of Technology
Summary:
When black holes collide, look out! An enormous burst of gravitational radiation results as they violently merge into one massive black hole. The "kick" that occurs during the collision could knock the black hole clear out of its galaxy. A new study describes the consequences of such an intergalactic collision.

When black holes collide, look out! An enormous burst of gravitational radiation results as they violently merge into one massive black hole. The "kick" that occurs during the collision could knock the black hole clear out of its galaxy. A new study describes the consequences of such an intergalactic collision.

Astrophysicist David Merritt, professor at Rochester Institute of Technology, and co-authors Milos Milosavljevic (Caltech), Marc Favata (Cornell University), Scott Hughes (Massachusetts Institute of Technology) and Daniel Holz (University of Chicago) explore the consequences of kicks induced by gravitational waves in their article, "Consequences of Gravitational Radiation Recoil," recently submitted to The Astrophysical Journal and posted online at http:// arXiv.org/abs/astro-ph/0402057 after 8 p.m. on February 3, EST.

Virtually all galaxies are believed to contain supermassive black holes at their centers. According to current theory, galaxies grow through mergers with other galaxies. When two galaxies merge, their central black holes form a binary system and revolve around each other, eventually coalescing into a single black hole. The coalescence is driven by the emission of gravitational radiation, as predicted by Einstein's theory of relativity.

Merritt and his colleagues determined how fast a black hole has to move to completely escape a galaxy's gravitational field. They found that larger and brighter galaxies have stronger gravitational fields and would require a bigger kick to eject a black hole than the smaller systems. Likewise, less forceful impacts could jar the black hole out of its home at the center of a galaxy, only to later rebound back into position.

The kicks also call into question theories that would grow supermassive black holes from hierarchical mergers of smaller black holes, starting in the early universe. "The reason is that galaxies were smaller long ago, and the kicks would easily have removed the black holes from them," Merritt says.

According to Merritt and his co-authors, it's more likely that supermassive black holes attained most of their mass through the accretion of gas and that mergers with other black holes only took place after the galaxies had reached roughly their current sizes.

"We know that supermassive black holes exist at the centers of giant galaxies like our own Milky Way," says Merritt. "But as far as we know, the smaller stellar systems do not have any black holes. Perhaps they used to, but they were kicked out."

The kick--a consequence of Einstein's relativity equations--occurs because gravitational waves emitted during the final plunge are anisotropic, producing recoil. The effect is maximized when one black hole is appreciably larger than the other one. While astrophysicists have been aware of this phenomenon since the 1960s, until now no one has had the analytical tools necessary to accurately calculate the size of the effect. The first accurate calculation of the size of the kicks was reported in a companion paper by Favata, Hughes and Holz, which also appears online at http://arXiv.org.

Merritt notes that there is no clear observational evidence that the kicks have taken place. He contends that the best chance of finding direct evidence would be locating a black hole shortly after the kick occurs, perhaps in a galaxy that has recently undergone a merger with another galaxy.

"You would see an off-center black hole that hasn't quite made its way back to the center yet," he says. "Even though the probability of observing this is low, now that astronomers know what to look for, I wouldn't be surprised if someone finds one eventually."


Story Source:

The above story is based on materials provided by Rochester Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Rochester Institute Of Technology. "New Study Shows How Black Holes Get Their 'Kicks'." ScienceDaily. ScienceDaily, 5 February 2004. <www.sciencedaily.com/releases/2004/02/040204000541.htm>.
Rochester Institute Of Technology. (2004, February 5). New Study Shows How Black Holes Get Their 'Kicks'. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2004/02/040204000541.htm
Rochester Institute Of Technology. "New Study Shows How Black Holes Get Their 'Kicks'." ScienceDaily. www.sciencedaily.com/releases/2004/02/040204000541.htm (accessed July 31, 2014).

Share This




More Space & Time News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Supply Ship Takes Off for International Space Station

Supply Ship Takes Off for International Space Station

AFP (July 30, 2014) The European Space Agency's fifth Automated Transfer Vehicle (ATV-5) is takes off to the International Space Station on an Ariane 5 rocket from French Guiana. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com
Raw: Rocket Launches Into Space With Cargo Ship

Raw: Rocket Launches Into Space With Cargo Ship

AP (July 30, 2014) Arianespace launched a rocket Tuesday from French Guiana carrying a robotic cargo ship to deliver provisions to the International Space Station. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins