Featured Research

from universities, journals, and other organizations

Researchers Create Terahertz Magnetism From Non-magnetic Materials

Date:
March 5, 2004
Source:
University Of California, Los Angeles
Summary:
A team of engineers and physicists at UCLA, UC San Diego and Imperial College in London has successfully created a "metamaterial" that displays strong, tunable magnetic activity at terahertz frequencies.

A team of engineers and physicists at UCLA, UC San Diego and Imperial College in London has successfully created a "metamaterial" that displays strong, tunable magnetic activity at terahertz frequencies. In a paper appearing in the March 5 issue of the journal Science, the researchers outline how they designed and built a new material with unprecedented properties.

Related Articles


"Creating a magnetic activity at the edge of optical frequencies is the first milestone toward realizing optical magnetism, which is not found in natural materials due to the lack of a magnetic monopole," said project leader Xiang Zhang, a professor in the UCLA Henry Samueli School of Engineering and Applied Science. "It will allow us to begin developing materials and devices that operate in the gap between optical frequencies and microwave frequencies. It opens the door to new applications in areas such as medicine, bio-sensing and security imaging."

The field of metamaterials is essentially based on designer's physics — researchers design and create new materials with a set of desired physical properties that do not exist in nature. By manipulating the structures, scientists can create materials with properties not found in the parent material. Recent advances in this field made it possible for Zhang's team to construct a system that exhibits magnetic properties at higher frequencies.

"The range of materials to be engineered is unlimited, despite the relatively small number of elements found in nature," Zhang said.

There has been growing interest in the possibility of applications operating at higher frequencies in biological and security imaging, biomolecular fingerprinting, and remote sensing and guidance in zero-visibility weather. Materials that exhibit a magnetic response at terahertz (THz) and optical frequencies are rarely found in nature, but Zhang's metamaterial bridges this gap. It exhibits magnetic activity that is wide bandwidth and tunable throughout THz frequencies.

"At higher frequencies, it would be possible to develop new tools for security or medical imaging," Zhang said. "The tools would become smaller, and could also detect organic threats such as anthrax or plastic knives that current security methods, such as X-ray machines, can't identify. We're not there yet, but we're getting closer."

The breakthrough is the culmination of four years of collaborative research at UCLA, UCSD and Imperial College. Funded by the Office of Naval Research and the U.S. Defense Advanced Research Projects Agency MURI program, the UCLA researchers initiated the project, which is based on theories proposed by their colleague at Imperial College.

The magnetic activity of natural materials tends to fade away at higher frequencies, making it difficult to sustain magnetism at optical frequencies. To address this, the research team developed a structure that extends the frequency range of metamaterials by more than two orders of magnitude.

The new properties were created by opening a gap that allows the structure to resonate at higher frequencies. By mimicking the magnetic effect at a much smaller scale, the researchers were able to create magnetic activity at nearly optical frequencies using common non-magnetic materials such as copper.

The split ring resonators that make up the periodic array were fabricated using a unique self-aligned microfabrication technique called photo-proliferate-process. UCLA researchers are among the first to develop and demonstrate successfully the use of this technique, which produces a well-defined shape with sharp edges and a very high filling density.

The team also discovered that by adjusting the parameters of the split ring resonators, they could tune the bandwidth of the magnetic response to a specific frequency.

"Designing THz or optical devices and components has many challenges," Zhang said. "Our work provides a new foundation for materials selection and device design, and we think it has the potential to enable an entirely new array of applications."

Before researchers can realize the full potential of applications operating at these higher frequencies, they must address such challenges as the limits of current nano-fabrication techniques and electron scattering on the surface of the materials.

The recently established National Science Foundation Nano-scale Science and Engineering Center headed by Zhang at UCLA is bringing new approaches to solving these problems. The Center for Scalable and Integrated Nano Manufacturing is developing novel nano‑manufacturing technologies and tools that will enable cost-effective nano-devices and systems.


Story Source:

The above story is based on materials provided by University Of California, Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, Los Angeles. "Researchers Create Terahertz Magnetism From Non-magnetic Materials." ScienceDaily. ScienceDaily, 5 March 2004. <www.sciencedaily.com/releases/2004/03/040305073144.htm>.
University Of California, Los Angeles. (2004, March 5). Researchers Create Terahertz Magnetism From Non-magnetic Materials. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2004/03/040305073144.htm
University Of California, Los Angeles. "Researchers Create Terahertz Magnetism From Non-magnetic Materials." ScienceDaily. www.sciencedaily.com/releases/2004/03/040305073144.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins