Featured Research

from universities, journals, and other organizations

Better Techniques Needed To Predict Earthquake Hazards, UC Study Finds

Date:
April 9, 2004
Source:
Lawrence Livermore National Laboratory
Summary:
Current methods for estimating the ground-shaking effects of major earthquakes could underestimate their severity and lead to inadequate seismic protection of new and existing buildings.

Ralph Archuleta's team drilling a hole outside Webb Hall on the UCSB campus to install seismic sensing equipment 75 meters underground in 1997.
Credit: Institute for Crustal Studies at UC Santa Barbara

Current methods for estimating the ground-shaking effects of major earthquakes could underestimate their severity and lead to inadequate seismic protection of new and existing buildings, according to a pioneering study of earthquake hazards at three University of California campuses – Riverside (UCR), San Diego (UCSD), and Santa Barbara (UCSB).

Related Articles


The study, reported in the April issue of the journal Soil Dynamics and Earthquake Engineering, was conducted in a five-year collaborative research project initiated and directed by Franηois Heuze, a geotechnical engineer at Lawrence Livermore National Laboratory (LLNL) near San Francisco. Seven UC campuses participated in the study, known as the Campus Earthquake Program.

The researchers found wide discrepancies between their own seismic hazard estimates for the three campuses and those produced by current estimating techniques used for designing new buildings and retrofitting existing buildings.

"The biggest weakness in the current state of the practice for seismic hazard assessment," said Ralph Archuleta, professor of seismology at UCSB, "is that we have very little data for very large earthquakes where the site is close to the causative fault. UCSB, UCR, and UCSD all have major faults that are very close to the campus.”

"A single estimate of ground motion for a site is not appropriate," said Heuze. "Even if you have a known fault and restrict your calculations to a known magnitude, this fault could provide that magnitude in many different fashions. Thus the severity of the ground shock where you stand could vary widely."

To try to overcome this problem, the researchers placed several seismic monitoring stations at each campus in boreholes up to 100 meters (330 feet) deep – three times the depth of typical geophysical studies – and collected data on small earthquakes from local faults as well as regional seismic events. They took and tested soil samples at various depths and simulated hundreds of possible earthquake scenarios based on such variables as where a rupture might occur on the fault, the path it might travel, and how fast it might move.

"We know that under very strong shaking the soil may not behave in a linear fashion," said Archuleta, "so we used nonlinear soil dynamics computer models to calculate the surface ground motions created by fault ruptures."

Heuze and Archuleta praised the UC Office of the President, the participating campuses, and LLNL's University Relations Program for funding the study, one of the first projects sponsored by UC's Campus-Laboratory Collaborations Program. The collaborations are funded by a portion of the compensation UC receives from the U.S. Department of Energy for managing Livermore and Los Alamos national labs. Other UC campuses that helped in the research were Berkeley, Davis, Los Angeles, and Santa Cruz. San Diego State University also participated.

The study benefited greatly from the variety of disciplines and expertise that were brought to bear through the multicampus-laboratory collaboration, Heuze said. "A single campus or Laboratory could not provide all the required expertise," he said.

Archuleta said that while the study's results still need to be validated by additional research, the University of California is already re-examining the earthquake hazard assumptions it has been using in light of the site-specific findings.

"The university has not backed away from these results," he said. “They're aware of it and thinking about how they’re going to use it. This provides the structural engineers with additional information that’s at least as reliable as what they now depend on, if not more so."

Michael Bocchicchio, UC’s assistant vice president for facilities administration, agreed that the site-specific studies provide geotechnicians with a "broader set of data" to use in analyzing construction projects.

"This whole (seismic analysis) area is a big black hole," Bocchicchio said. "It’s the weak link scientifically in the building design process. In the end, though, buildings are more sensitive to good detailing and good construction for seismic performance, as opposed to the absolute numbers you use for (motion) acceleration."

"Given the existing building stock at the university's campuses and the new construction that will continue,” Archuleta said, "it's important to be very site-specific. If you’re only using the current state of the practice, you could be missing critical information."

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy's National Nuclear Security Administration.


Story Source:

The above story is based on materials provided by Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Lawrence Livermore National Laboratory. "Better Techniques Needed To Predict Earthquake Hazards, UC Study Finds." ScienceDaily. ScienceDaily, 9 April 2004. <www.sciencedaily.com/releases/2004/04/040409092020.htm>.
Lawrence Livermore National Laboratory. (2004, April 9). Better Techniques Needed To Predict Earthquake Hazards, UC Study Finds. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2004/04/040409092020.htm
Lawrence Livermore National Laboratory. "Better Techniques Needed To Predict Earthquake Hazards, UC Study Finds." ScienceDaily. www.sciencedaily.com/releases/2004/04/040409092020.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Fish Species Discovered, Setting Record for World's Deepest

New Fish Species Discovered, Setting Record for World's Deepest

Buzz60 (Dec. 22, 2014) — A new species of fish is discovered living five miles beneath the ocean surface, making it the deepest living fish on earth. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Raw: Lava Inches Closer to Highway

Raw: Lava Inches Closer to Highway

AP (Dec. 21, 2014) — Officials have opened a new road on Hawaii's Big Island for drivers to take care of their daily needs if encroaching lava from Kilauea Volcano crosses a highway and cuts them off from the rest of the island. (Dec. 20) Video provided by AP
Powered by NewsLook.com
Could Cheap Oil Help Fix U.S. Roads?

Could Cheap Oil Help Fix U.S. Roads?

Newsy (Dec. 21, 2014) — As falling oil prices boost Americans' spending power, the U.S. government is also gaining flexibility from savings on oil. Video provided by Newsy
Powered by NewsLook.com
Raw: Russian Surfers Brave Icy Cold Waters

Raw: Russian Surfers Brave Icy Cold Waters

AP (Dec. 20, 2014) — Surfers in Russia's biggest port city on the Pacific Ocean, Vladivostok, were enjoying the sport on Saturday despite below freezing temperatures and icy cold waters. (Dec. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins