Featured Research

from universities, journals, and other organizations

Dental Pulp Cells May Hold Key To Treatment Of Parkinson's Disease

Date:
May 5, 2004
Source:
University Of Michigan
Summary:
Cells derived from the inside of a tooth might someday prove an effective way to treat the brains of people suffering from Parkinson's disease.

ANN ARBOR, Mich. -- Cells derived from the inside of a tooth might someday prove an effective way to treat the brains of people suffering from Parkinson's disease.

A study in the May 1 issue of the European Journal of Neuroscience shows dental pulp cells provide great support for nerve cells lost in Parkinson's disease and could be transplanted directly into the affected parts of the brain. The study's lead author is Christopher Nosrat, an assistant professor of biological and materials sciences at the University of Michigan School of Dentistry.

This is not the first test of stem cells as a therapy for Parkinson's disease-type illnesses, known as neurodegenerative diseases, but Nosrat noted that it is the first to use post-natal stem cells grown from more readily available tooth pulp in the nervous system.

Using dental pulp has other advantages besides its availability, Nosrat said. The cells produce a host of beneficial "neurotrophic" factors, which promote nerve cell survival.

Parkinson's disease is characterized by symptoms including tremors of the hands, arms or legs, rigidity of the body and difficulty balancing while standing or walking. Parkinson's affects nerve cells in the part of the brain called the basal ganglia, which is responsible for control of voluntary movement. An estimated 1 million Americans suffer from Parkinson's disease, for which there is no cure.

Nosrat's study involved evaluating the potential of injecting tooth cells into brain cells as a possible cell-based therapy for Parkinson's. He was testing whether the tooth cells could provide neurotrophic factors to support dying nerve cells and replace dead cells.

Nosrat also has studied dental pulp stem cells as a treatment for spinal cord injuries and said applying that knowledge to treatment of neurodegenerative disease was the next logical step.

He used the same general approach for this Parkinson's study: researchers extract a tooth and draw cells from the center of the tooth, then culture them in a Petri dish to increase the number of the cells. The cell mixture then contains neuronal precursor cells and cells that produce beneficial neurotrophic factors.

Nosrat emphasized that there is much work to be done before human patients might find relief from Parkinson's symptoms as a result of this therapy. It is still many years from being tested in people as a possible treatment or cure for neurological disorders.

Previous studies have used other sources for stem cells, and in animal and human studies, most of those cells die when grafted into the brain. Nosrat believes cells drawn from dental pulp are more robust because they also produce the neurotrophic factors, which promote nerve cell survival. Nosrat hopes that by refining the delivery method—by focusing the treatment much more specifically on affected parts of the brain and the co-delivery of neurotrophic factors—he can eventually achieve success.

European Journal of Neuroscience is the official journal for the federation of European neuroscience societies: http://www.blackwellpublishing.com/journal.asp?ref=0953-816X&site=1 The article is titled "Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro, implications for tissue engineering and repair in the nervous system."

Nosrat's co-authors are his wife, Irina Nosrat, Christopher Smith and Patrick Mullally, at the U-M School of Dentistry, and Lars Olson at the Karolinksa Institutet in Stockholm, Sweden.

Partial funding for the study came from the National Institute of Dental and Craniofacial Research, part of the National Institutes of Health, as well as from the Michigan Parkinson's Foundation.

Nosrat's faculty profile: http://bms.dent.umich.edu/people/nosrat.html

A release on Nosrat's work in spinal cord injuries: http://www.umich.edu/~newsinfo/Releases/2001/Sep01/r090401.html


Story Source:

The above story is based on materials provided by University Of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University Of Michigan. "Dental Pulp Cells May Hold Key To Treatment Of Parkinson's Disease." ScienceDaily. ScienceDaily, 5 May 2004. <www.sciencedaily.com/releases/2004/05/040505065427.htm>.
University Of Michigan. (2004, May 5). Dental Pulp Cells May Hold Key To Treatment Of Parkinson's Disease. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2004/05/040505065427.htm
University Of Michigan. "Dental Pulp Cells May Hold Key To Treatment Of Parkinson's Disease." ScienceDaily. www.sciencedaily.com/releases/2004/05/040505065427.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins