Featured Research

from universities, journals, and other organizations

New Research At UNC Shows Ribosomes Do Not Function As Conventional Enzymes

Date:
May 13, 2004
Source:
University Of North Carolina At Chapel Hill
Summary:
Contrary to what some scientists have suggested, key intracellular particles known as ribosomes serve as mechanical matchmakers or readout devices rather than acting chemically to speed up reactions in the body the way enzymes do, University of North Carolina at Chapel Hill researchers and colleagues have discovered.

CHAPEL HILL -- Contrary to what some scientists have suggested, key intracellular particles known as ribosomes serve as mechanical matchmakers or readout devices rather than acting chemically to speed up reactions in the body the way enzymes do, University of North Carolina at Chapel Hill researchers and colleagues have discovered.

A report on the findings by Drs. Annette Sievers and Richard Wolfenden of the UNC School of Medicine appears in the new issue of the Proceedings of the National Academy of Sciences.

Besides Sievers and Wolfenden, report authors are doctoral student Malte Beringer and Dr. Marina V. Rodnina of the University of Witten/Herdecke in Witten, Germany.

"Enzymes, of which we have hundreds, participate chemically in the transformation of biological molecules by making and breaking bonds," said Wolfenden, Alumni Distinguished professor of biochemistry and biophysics. "A hallmark of that direct chemical involvement is that their catalytic effects are extremely temperature dependent. The question was whether the ribosome acts as an enzyme since there has been considerable interest in whether this particle does that."

Ribosomes are critical sites of protein synthesis, he said. Inside those particles, amino acids are laid down in proteins in the order specified by the genetic code.

In general, enzymes, which are biological catalysts, facilitate a chemical transformation by lowering the energy barrier, Sievers said.

"One can imagine this as two paths over a mountain," she said. "The path without the enzyme is much higher, and so it takes more energy to cross the mountain. The path on the enzyme is lower, and so it is easier to follow it."

Energy has two components, Sievers said. One is heat (enthalpy), the other one refers to the order of a system (entropy). It's possible for an enzyme to lower either of those energy components. Direct chemical involvement of an enzyme is characterized by lowering the enthalpy of the activation barrier and has often been observed.

"In our present work we tested the contribution of enthalpy and entropy to lowering the activation energy barrier," she said. "Malte did this by comparing the energy barrier of the reaction when the ribosome was present, and I did it when the ribosome was not present."

The reactions both with the ribosome present and without the ribosome have the same enthalpic activation barrier, the researchers found.

"The means by which the ribosome speeds up the chemical transformation is purely entropic in origin -- the ribosome acts as a mechanical readout device, rather than speeding up the reaction in the way that conventional enzymes do," Sievers said.

The experiments will help scientists narrow their view of how ribsomes function and understand them better, Wolfenden said.

"Annette and Malte's discovery has important implications for the design of inhibitors of protein synthesis and might ultimately furnish a new basis for drug design," he said. "Their work shows that the ribosome's effect is to introduce order into chaos."


Story Source:

The above story is based on materials provided by University Of North Carolina At Chapel Hill. Note: Materials may be edited for content and length.


Cite This Page:

University Of North Carolina At Chapel Hill. "New Research At UNC Shows Ribosomes Do Not Function As Conventional Enzymes." ScienceDaily. ScienceDaily, 13 May 2004. <www.sciencedaily.com/releases/2004/05/040511040938.htm>.
University Of North Carolina At Chapel Hill. (2004, May 13). New Research At UNC Shows Ribosomes Do Not Function As Conventional Enzymes. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2004/05/040511040938.htm
University Of North Carolina At Chapel Hill. "New Research At UNC Shows Ribosomes Do Not Function As Conventional Enzymes." ScienceDaily. www.sciencedaily.com/releases/2004/05/040511040938.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins