Featured Research

from universities, journals, and other organizations

Tumor Suppressor Gene Family May Be Key To New Colon Cancer Drugs

Date:
May 21, 2004
Source:
Johns Hopkins Medical Institutions
Summary:
In the hunt for new cancer drug targets, scientists from the Johns Hopkins Kimmel Cancer Center and the Howard Hughes Medical Institute have discovered mutations in a family of genes linked to more than a quarter of colon cancers, as well as several other common cancers including breast and lung.

In the hunt for new cancer drug targets, scientists from the Johns Hopkins Kimmel Cancer Center and the Howard Hughes Medical Institute have discovered mutations in a family of genes linked to more than a quarter of colon cancers, as well as several other common cancers including breast and lung. Their research, published in the May 21, 2004 issue of Science, reveals more options for creating personalized therapies tailored to counteract mutated gene pathways present in individual tumors.

Related Articles


"What makes this discovery significant is that we've found mutations that directly affect cancer development," says Victor Velculescu, M.D., Ph.D., senior author of the study and assistant professor at the Johns Hopkins Kimmel Cancer Center. "Most gene discoveries today focus on finding increased or decreased activity of a gene that may not affect cancer progression, akin to passengers on a bus that can't control the bus' speed or direction. What we've found are the brakes of the bus."

After analyzing 157 colon cancers, the research team found 77 mutations in six genes that make tyrosine phosphatases, enzymes that help coordinate signals that manage cellular growth, death, differentiation, and nearby tissue invasion. They normally work by turning off tumor growth, as so-called tumor suppressors, but in cancers these genes are mutated and no longer work properly. Because it is difficult to restore a mutated suppressor gene with cancer drugs, the investigators believe phosphatases themselves are not good drug targets. Yet, for every tyrosine phosphatase there is a matching enzyme, called a tyrosine kinase, which plays an opposite role, turning a pathway on and accelerating cellular events.

"If a bus' brakes are broken and they can't be fixed, another way to slow it down is to let up on the accelerator," explains Velculescu. "In this case, the faulty brakes are mutated tyrosine phosphatases and the accelerators are the tyrosine kinases." Tyrosine kinases have been of critical value in the success of such cancer-fighting drugs as Gleevec, Iressa and Herceptin, which block proteins made by tyrosine kinase genes.

Last May, Velculescu's team systematically analyzed tyrosine kinases and found mutations in this family of genes linked to more than 30 percent of colon cancer. "We will be conducting additional research to explore tyrosine phosphatase pathways and match them up with corresponding kinases in order to find targets for potential inhibitory drugs," says Zhenghe Wang, Ph.D., postdoctoral fellow and first author of the paper.

More than two-thirds of colon cancers have mutations in the tyrosine kinase and phosphatase families, as well as another kinase gene Velculescu's group identified recently. Tyrosine phosphatase mutations were also found in two of 11 (18 percent) lung cancers, two of 12 (17 percent) gastric cancers, and one of 11 (9 percent) breast cancers.

Colon cancer strikes 147,500 Americans every year and 57,100 will die from the disease.

This research was funded by the Ludwig Trust, the Maryland Cigarette Restitution Fund, the Benjamin Baker Scholarship Fund, the Clayton Fund, and the National Institutes of Health.

In addition to Velculescu and Wang, the following scientists participated in this research: Dong Shen, D. Williams Parsons, Alberto Bardelli, Jason Sager, Steve Szabo, Janine Ptak, Natalie Silliman, Brock A. Peters, Michiel S. van der Heijden, Giovanni Parmigiani, Tian-Li Wang, Greg Riggins, Kenneth W. Kinzler, and Bert Vogelstein from the Johns Hopkins Kimmel Cancer Center and Howard Hughes Medical Institute; Hai Yan, from Duke University Medical Center; Steven Powell, from UVA Health System; and James K.V. Willson and Sanford Markowitz from the Howard Hughes Medical Institute, Ireland Cancer Center, and University Hospitals of Cleveland and Case Western Reserve University.

Wang, Zhenghe, et al, "Mutational Analysis of the Tyrosine Phosphatome in Colorectal Cancers," Science, May 21, 2004.

Link:

Johns Hopkins Kimmel Cancer Center: http://www.hopkinskimmelcancercenter.org


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Tumor Suppressor Gene Family May Be Key To New Colon Cancer Drugs." ScienceDaily. ScienceDaily, 21 May 2004. <www.sciencedaily.com/releases/2004/05/040521071231.htm>.
Johns Hopkins Medical Institutions. (2004, May 21). Tumor Suppressor Gene Family May Be Key To New Colon Cancer Drugs. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2004/05/040521071231.htm
Johns Hopkins Medical Institutions. "Tumor Suppressor Gene Family May Be Key To New Colon Cancer Drugs." ScienceDaily. www.sciencedaily.com/releases/2004/05/040521071231.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
Ebola: Life Without School in Guinea

Ebola: Life Without School in Guinea

AFP (Nov. 21, 2014) Following the closure of schools and universities in Guinea because of the Ebola virus, students look for temporary work or gather in makeshift classrooms to catch up on their syllabus. Duration: 02:14 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins