Featured Research

from universities, journals, and other organizations

Corals Can Reestablish Symbiosis With Algae From Their Environments After Bleaching

Date:
June 8, 2004
Source:
University At Buffalo
Summary:
Corals can develop new symbiotic relationships with algae from their environments after they've undergone bleaching, the process by which corals whiten as a result of environmental stress, University at Buffalo biologists report in the current issue of Science.

UB researchers, working with the Caribbean octocoral, Briareum sp., have found that corals can recover from bleaching.
Credit: Image courtesy University At Buffalo

BUFFALO, N.Y. -- Corals can develop new symbiotic relationships with algae from their environments after they've undergone bleaching, the process by which corals whiten as a result of environmental stress, University at Buffalo biologists report in the current issue of Science.

The research provides evidence that corals may have multiple mechanisms that facilitate recovery from bleaching induced by environmental stresses.

Scientists have known that corals can recover from bleaching episodes, but they did not know why.

It has not been clear whether recovery resulted from the few remaining symbiotic algae, or algal symbionts, remaining within the coral tissue since early development, or if coral could acquire entirely new ones from their aquatic environments.

Corals survive and thrive because of the symbiotic relationship they develop with the single-celled algae called zooxanthellae (zo-zan-thel-y), which live inside them and help supply them with food.

But certain environmental stresses, such as high or low light or sea temperatures, can lead to a reduction in algal densities or loss of pigmentation, leaving the coral's white skeleton visible through the clear tissue.

"Our data show that corals have the potential to take up new symbionts, providing a mechanism for resilience in the face of environmental change," said Mary-Alice Coffroth, Ph.D., associate professor of biological sciences in UB's College of Arts and Sciences, and senior author on the paper.

Coffroth and her co-author, Cynthia L. Lewis, who recently received her master's degree in biological sciences from UB, induced bleaching in gorgonian soft corals (a type of sea rod common to Caribbean reefs) by keeping them in darkness in the laboratory.

After 12 weeks of darkness, cell densities of symbionts in the coral had plunged to less than one percent of their population density when the corals were healthy.

During the six weeks following 'bleaching,' the corals were exposed to algal symbionts that were added to the aquarium water.

The researchers found that at the end of this period, symbiont cell densities within the coral showed a significant increase, demonstrating that the coral animals were able to establish symbiotic relationships with these new, or exogenous, algae.

"We found cell densities within the coral had increased between nine and 31 times the level measured immediately following the bleaching episode," said Lewis.

"The symbiosis had begun to reestablish itself," added Coffroth.

The UB researchers caution that the survival of individual colonies and populations of coral should not be construed as a demonstration that an entire ecosystem is healthy.

"Nevertheless, these data demonstrate that these animals may have the resilience to recover from bleaching episodes," said Coffroth.

The coral used in the research was harvested from the Florida Keys National Marine Sanctuary and the laboratory work was conducted at the Keys Marine Laboratory in Long Key, Florida.

The work was supported by grants from the National Science Foundation.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs.


Story Source:

The above story is based on materials provided by University At Buffalo. Note: Materials may be edited for content and length.


Cite This Page:

University At Buffalo. "Corals Can Reestablish Symbiosis With Algae From Their Environments After Bleaching." ScienceDaily. ScienceDaily, 8 June 2004. <www.sciencedaily.com/releases/2004/06/040604032852.htm>.
University At Buffalo. (2004, June 8). Corals Can Reestablish Symbiosis With Algae From Their Environments After Bleaching. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2004/06/040604032852.htm
University At Buffalo. "Corals Can Reestablish Symbiosis With Algae From Their Environments After Bleaching." ScienceDaily. www.sciencedaily.com/releases/2004/06/040604032852.htm (accessed September 30, 2014).

Share This



More Earth & Climate News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Balloon Descends to Bottom of Croatian Cave

Raw: Balloon Descends to Bottom of Croatian Cave

AP (Sep. 29, 2014) An Austrian balloon pilot has succeeded in taking a balloon deep underground, a feat which he believes is a world first. (Sept. 29) Video provided by AP
Powered by NewsLook.com
Bodies Recovered from Japan Volcano Eruption

Bodies Recovered from Japan Volcano Eruption

AP (Sep. 29, 2014) Rescue crews finished recovering the remaining 27 bodies from atop Japan's Mount Ontake Monday. At least 31 people were killed Saturday in the mountain's first fatal volcanic event in modern history. (Sept. 29) Video provided by AP
Powered by NewsLook.com
Raw: Japan's Mount Ontake Erupts

Raw: Japan's Mount Ontake Erupts

AP (Sep. 27, 2014) A volcano erupted in central Japan on Saturday, sending a large plume of ash high into the sky and prompting a warning to climbers and others to avoid the area. (Sept. 27) Video provided by AP
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins