Featured Research

from universities, journals, and other organizations

A Quantum Mechanical 'Tune Up' For Better Measurement

Date:
June 7, 2004
Source:
National Institute Of Standards And Technology
Summary:
By exploiting the weird quantum behavior of atoms, physicists at the Commerce Department's National Institute of Standards and Technology (NIST) have demonstrated a new technique that someday could be used to save weeks of measurements needed to operate ultraprecise atomic clocks.

By exploiting the weird quantum behavior of atoms, physicists at the Commerce Department's National Institute of Standards and Technology (NIST) have demonstrated a new technique that someday could be used to save weeks of measurements needed to operate ultraprecise atomic clocks. The technique also could be used to improve the precision of other measurement processes such as spectroscopy.

Related Articles


The technique, described in today's issue of Science, effectively turns atoms into better frequency sensors. Eventually, the technique could help scientists measure the ticks of an atomic clock faster and more accurately. Just as a grandfather clock uses the regular swings of a pendulum to count off each second of time, an atomic clock produces billions of ticks per second by detecting the regular oscillations of atoms. The trick to producing extremely accurate atomic clocks is to measure this frequency very precisely for a specific atom.

In the latest experiment, the scientists used very brief pulses of ultraviolet light in a NIST-developed technique to put three beryllium ions (charged atoms) into a special quantum state called entanglement. In simple terms, entanglement involves correlating the fates of two or more atoms such that their behavior--in concert--is very different from the independent actions of unentangled atoms. One effect is that, once a measurement is made on one atom, it becomes possible to predict the result of a measurement on another. When applied to atoms in an atomic clock, the effect is that n entangled atoms will tick n times faster than the unentangled atoms.

Currently, scientists at NIST and other laboratories make many thousands of measurements of the ticks of unentangled atoms and average these results to get highly accurate atomic clocks (currently keeping time to better than one second in 40 million years).

If entangled atoms could be used in a clock, the same or better results could be achieved with far fewer separate measurements. The current experiment demonstrates this new approach to precision measurement with three ions; however, the researchers are looking forward to entangling even more ions to take greater advantage of the technique.

"Even if we could implement this new technique with only 10 ions, in the clock business that's really important because the clocks must be averaged for weeks and even months," says NIST physicist Dave Wineland, leader of the research group. "The time needed to do that would be reduced by a factor of 10."

In the experiment reported in Science, scientists entangled the ions with two laser beams, using a technique originally developed for quantum computing applications. The ions are hit with another series of laser pulses and their fluorescence (emitted light, which represents the ions' quantum state) is measured for a specific period of time. The duration of the steps, number of ions, and other experimental conditions are controlled carefully to ensure all the ions are in the same state when they are measured, so that either all or none fluoresce, which simplifies the readout.

###

The research was supported in part by the Advanced Research and Development Activity and the National Security Agency.

As a non-regulatory agency of the U.S. Department of Commerce's Technology Administration, NIST develops and promotes measurement, standards and technology to enhance productivity, facilitate trade and improve the quality of life.


Story Source:

The above story is based on materials provided by National Institute Of Standards And Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute Of Standards And Technology. "A Quantum Mechanical 'Tune Up' For Better Measurement." ScienceDaily. ScienceDaily, 7 June 2004. <www.sciencedaily.com/releases/2004/06/040607073534.htm>.
National Institute Of Standards And Technology. (2004, June 7). A Quantum Mechanical 'Tune Up' For Better Measurement. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2004/06/040607073534.htm
National Institute Of Standards And Technology. "A Quantum Mechanical 'Tune Up' For Better Measurement." ScienceDaily. www.sciencedaily.com/releases/2004/06/040607073534.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins