Featured Research

from universities, journals, and other organizations

Treating Cocaine Addiction With Viruses

Date:
June 29, 2004
Source:
Scripps Research Institute
Summary:
Scientists have designed a potentially valuable tool for treating cocaine addiction by creating a modified "phage" virus that soaks up the drug inside the brain.

Scientists at The Scripps Research Institute have designed a potentially valuable tool for treating cocaine addiction by creating a modified "phage" virus that soaks up the drug inside the brain.

They coated the virus with an antibody that binds to molecules of cocaine and helps to clear the drug from the brain, which could suppress the positive reinforcing aspects of the drug by eliminating the cocaine high.

"Typically one would think of a virus as a bad entity," says principal investigator Kim D. Janda, Ph.D., who holds the Ely R. Callaway, Jr. Chair in Chemistry and is an investigator in The Skaggs Institute for Chemical Biology at Scripps Research. "But we are taking advantage of a property it has—the ability to get into the central nervous system."

The structure and design of the virus and its effect in rodent models are described in an article that will be published in an upcoming issue of the Proceedings of the National Academy of Sciences.

Cocaine's Costs to Society

Americans spend more on cocaine, a chemical extracted from the leaf of the Erythroxylaceae coca plant, than on all other illegal drugs combined, says a White House Office of National Drug Control Policy study that came out in the mid-1990s. The study estimates that $38 billion was spent on cocaine in the years 1988 to 1995 alone.

Cocaine's secondary costs to society due to cocaine treatment and prevention programs, emergency room visits and other healthcare costs, lost job productivity, lost earnings, cocaine-related crime, and social welfare are estimated to be in the billions of dollars annually—not to mention the drug's human toll. According to the National Institute on Drug Abuse (NIDA), about 1.7 million people regularly use cocaine in the United States—a population larger than that of the city of Philadelphia—and cocaine is the leading cause of heart attacks and strokes for people under 35.

Once in the bloodstream, cocaine crosses the blood-brain barrier and accumulates rapidly in the ventral tegmental area of the brain. This area is connected by nerve cells to the nucleus accumbens, the so-called pleasure center of the brain. There, the cocaine molecules interfere with the normal regulation of dopamine by binding to dopamine transporters and blocking them from recycling the neurotransmitter.

This leads to the build-up of dopamine in the brain's pleasure center, which produces a euphoric feeling in the user—a quick rush that hits seconds after the user takes the drug and lasts several minutes.

Relapse, unfortunately, is a reality for many addicts. Part of the basis of relapse may be the strong positive reinforcement of the high—doing the drug is so enjoyable for addicts that they are conditioned to return to it.

Using Viruses in the Battle Against Cocaine

Several years ago, Janda and his colleagues designed an antibody that was able to bind to cocaine. If the antibody was present in the bloodstream, it would soak up the cocaine like a sponge and prevent it from entering the central nervous system where the drug exerts its narcotic effect. As a molecule, cocaine is easily degraded by the body's natural chemistry, and the sequestered cocaine would eventually disappear.

While this strategy was partially effective, the ability of the antibody to curtail cocaine's effect proved to be limited in animal studies. The antibody could not cross the blood-brain barrier and cocaine could. In laboratory models, a large dose of cocaine molecules could overwhelm the antibodies in the blood, doing an end-run around them and leaking into the brain.

A few years ago, Janda and his graduate students Rocio Carrera and Gunnar Kaufmann decided they wanted to target the cocaine antibodies into the brain. That's when they set out to create a new form of virus. This was done with collaborators Jenny Mee and Michael Meijler in the Department of Chemistry and Professor George Koob in the Department of Neuropharmacology and the Pearson Center For Alcoholism And Addiction Research at Scripps Research.

The researchers used filamentous phage—a type of virus that infects bacteria—for the study. They inserted DNA encoding an antibody that binds cocaine into the phage's genetic code. When the modified phage were grown, they had hundreds of these antibodies displayed on their surfaces.

Phage particles, like many types of viruses, have the ability to enter the brain through the internasal passageway. Janda, Carrera, and Kaufmann used this ability to deliver their antibody into the central nervous system. The current study demonstrates the ability of the antibody/phage to reduce one effect of cocaine in rodent models (increased locomotion).

A similar technique could potentially be used for treating the positively reinforcing aspects of the drug in humans, say the scientists, but they cautioned that such an approach has not been tested clinically and that even if proven safe and effective it would be years before any such therapy were available to patients.

The technique of displaying therapeutic proteins or peptides on phage particles could be useful as a general way of delivering therapies into the brain

The research article "Treating cocaine addiction with viruses" is authored by M. Rocio A. Carrera, Gunnar F. Kaufmann, Jenny M. Mee, Michael M. Meijler, Kim D. Janda, and George F. Koob and is being published online the week of June 21 - 25, 2004 by the journal Proceedings of the National Academy of Sciences. It will appear in a printed issue of PNAS later this year. See http://www.pnas.org/cgi/doi/10.1073/pnas.0403795101

This research was supported by the National Institute on Drug Abuse and The Skaggs Institute for Chemical Biology at The Scripps Research Institute.

About The Scripps Research Institute

The Scripps Research Institute in La Jolla, California, is one of the world's largest, private, non-profit biomedical research organizations. It stands at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its research into immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune diseases, cardiovascular diseases and synthetic vaccine development.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Scripps Research Institute. "Treating Cocaine Addiction With Viruses." ScienceDaily. ScienceDaily, 29 June 2004. <www.sciencedaily.com/releases/2004/06/040624093341.htm>.
Scripps Research Institute. (2004, June 29). Treating Cocaine Addiction With Viruses. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2004/06/040624093341.htm
Scripps Research Institute. "Treating Cocaine Addiction With Viruses." ScienceDaily. www.sciencedaily.com/releases/2004/06/040624093341.htm (accessed September 1, 2014).

Share This




More Mind & Brain News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins