Featured Research

from universities, journals, and other organizations

"Mighty Mouse" Gene Works The Same Way In People

Date:
June 24, 2004
Source:
Johns Hopkins Medical Institutions
Summary:
By studying the genes of a German child born with unusually well developed muscles, an international research team has discovered the first evidence that the gene whose loss makes "mighty mice" also controls muscle growth in people.

By studying the genes of a German child born with unusually well developed muscles, an international research team has discovered the first evidence that the gene whose loss makes "mighty mice" also controls muscle growth in people.

Related Articles


Writing in the June 24 issue of the New England Journal of Medicine, German neurologist Markus Schuelke, M.D., and the team show that the child's extra-large muscles are due to an inherited mutation that effectively silences the myostatin gene, proving that its protein normally keeps muscle development in check in people.

People with muscle-wasting conditions such as muscular dystrophy, and others just wanting to "bulk up," have eagerly followed work on myostatin, hoping for a way to counteract the protein's effects in order to build or rebuild muscle mass. But while research with mice has continued to reveal myostatin's role and the effects of interfering with it, no one knew whether any of the results would be relevant to humans.

"This is the first evidence that myostatin regulates muscle mass in people as it does in other animals," says Se-Jin Lee, M.D., Ph.D., professor of molecular biology and genetics in the Institute for Basic Biomedical Sciences at Johns Hopkins and co-author on the study. "That gives us a great deal of hope that agents already known to block myostatin activity in mice may be able to increase muscle mass in humans, too."

Lee and his team discovered in 1997 that knocking out the myostatin gene led to mice that were twice as muscular as their normal siblings, lending them the moniker "mighty mice." Later, others showed that naturally bulky cattle, such as Belgian Blues, got their extra muscles from lack of myostatin, too.

An unusual opportunity to examine myostatin's role in humans arose when Schuelke examined a newborn baby boy, almost five years ago, and was struck by the visible muscles on the infant's upper legs and upper arms. When ultrasound proved that the muscles were roughly twice as large as other infants', but otherwise normal, Schuelke realized that a naturally occurring mutation in the child's myostatin gene might be the cause.

Sequencing the myostatin gene from the boy and his mother, who had been a professional athlete, revealed a single change in the building blocks of the gene's DNA. Surprisingly, the change was not in the gene regions that correspond to the resulting protein, but in the intervening regions that are used only to create protein-making instructions, thus changing the gene's protein-building message.

"The mutation caused the gene's message, the messenger RNA, to be wrong," says Hopkins neurologist Kathryn Wagner, M.D., Ph.D., who tested the genetic mutation's effect in laboratory studies. "If the message had been used to make a protein, it would be much shorter than it should be. But we think the process doesn't even get that far; instead the cells just destroy the message."

Co-authors from Wyeth Research, Cambridge, Mass., analyzed samples of the child's blood for evidence of the myostatin protein and found none. "Both copies of the child's myostatin gene have this mutation, so little if any of the myostatin protein is made," says Schuelke. "As a result, he has about twice the muscle mass of other children."

Completely lacking myostatin, the boy is stronger than other children his age, and fortunately has no signs of problems with his heart so far, Schuelke says. But he adds that it's impossible to know whether the lack of myostatin in that crucial muscle might lead to problems as the boy gets older.

While other family members -- the boy's mother and her brother, father and grandfather -- were also reported to have been usually strong, only the mother's DNA was available for analysis along with her son's. Schuelke discovered that only one copy of the mother's myostatin gene had the mutation found in both copies of her son's myostatin gene. (We have two copies of each gene; one inherited from the mother and one inherited from the father.)

The Johns Hopkins researchers were funded by the National Institutes of Health and the Muscular Dystrophy Association. The German researchers were funded by the parents' self-help group (Helft dem muskelkranken Kind).

Authors on the paper are Schuekle, Christoph Hubner, Thomas Riebel and Wolfgang Komen of Charite, University Medical Center Berlin, Germany; Wagner and Lee of Johns Hopkins; Leslie Stolz and James Tobin of Wyeth Research, Cambridge, Ma.; and Thomas Braun of Martin-Luther-University, Halle-Wittenberg, Germany.

*Under a licensing agreement between MetaMorphix Inc. and The Johns Hopkins University, Lee is entitled to a share of royalty received by the University on sales of products described in this article. Lee also is entitled to a share of sublicensing income from arrangements between MetaMorphix and American Home Products (Wyeth Ayerst Laboratories) and Cape Aquaculture Technologies. Lee and the University own MetaMorphix Inc. stock, which is subject to certain restrictions under University policy. Lee owns Cape Aquaculture Technologies stock, which is subject to certain restrictions under University policy. Lee has served as a paid consultant to MetaMorphix Inc. The terms of these arrangements are being managed by The Johns Hopkins University in accordance with its conflict of interest policies.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. ""Mighty Mouse" Gene Works The Same Way In People." ScienceDaily. ScienceDaily, 24 June 2004. <www.sciencedaily.com/releases/2004/06/040624094836.htm>.
Johns Hopkins Medical Institutions. (2004, June 24). "Mighty Mouse" Gene Works The Same Way In People. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2004/06/040624094836.htm
Johns Hopkins Medical Institutions. ""Mighty Mouse" Gene Works The Same Way In People." ScienceDaily. www.sciencedaily.com/releases/2004/06/040624094836.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins