Featured Research

from universities, journals, and other organizations

New Theory Links Neutrino's Slight Mass To Accelerating Universe Expansion

Date:
July 28, 2004
Source:
University Of Washington
Summary:
Two of the biggest physics breakthroughs during the last decade are the discovery that wispy subatomic particles called neutrinos actually have a small amount of mass and the detection that the expansion of the universe is actually picking up speed.

Two of the biggest physics breakthroughs during the last decade are the discovery that wispy subatomic particles called neutrinos actually have a small amount of mass and the detection that the expansion of the universe is actually picking up speed.

Related Articles


Now three University of Washington physicists are suggesting the two discoveries are integrally linked through one of the strangest features of the universe, dark energy, a linkage they say could be caused by a previously unrecognized subatomic particle they call the "acceleron."

Dark energy was negligible in the early universe, but now it accounts for about 70 percent of the cosmos. Understanding the phenomenon could help to explain why someday, long in the future, the universe will expand so much that no other stars or galaxies will be visible in our night sky, and ultimately it could help scientists discern whether expansion of the universe will go on indefinitely.

In this new theory, neutrinos are influenced by a new force resulting from their interactions with accelerons. Dark energy results as the universe tries to pull neutrinos apart, yielding a tension like that in stretched rubber band, said Ann Nelson, a UW physics professor. That tension fuels the expansion of the universe, she said.

Neutrinos are created by the trillions in the nuclear furnaces of stars such as our sun. They stream through the universe, and billions pass through all matter, including people, every second. Besides a minuscule mass, they have no electrical charge, which means they interact very little, if at all, with the materials they pass through.

But the interaction between accelerons and other matter is even weaker, Nelson said, which is why those particles have not yet been seen by sophisticated detectors. However, in the new theory, accelerons exhibit a force that can influence neutrinos, a force she believes can be detected by a variety of neutrino experiments already operating around the world.

"There are many models of dark energy, but the tests are mostly limited to cosmology, in particular measuring the rate of expansion of the universe. Because this involves observing very distant objects, it is very difficult to make such a measurement precisely," Nelson said.

"This is the only model that gives us some meaningful way to do experiments on earth to find the force that gives rise to dark energy. We can do this using existing neutrino experiments."

The new theory is advanced in a paper by Nelson; David Kaplan, also a UW physics professor; and Neal Weiner, a UW research associate in physics. Their work, supported in part by a grant from the U.S. Department of Energy, is detailed in a paper accepted for publication in an upcoming issue of Physical Review Letters, a journal of the American Physical Society.

The researchers say a neutrino's mass can actually change according to the environment through which it is passing, in the same way the appearance of light changes depending on whether it's traveling through air, water or a prism. That means that neutrino detectors can come up with somewhat different findings depending on where they are and what surrounds them.

But if neutrinos are a component of dark energy, that suggests the existence of a force that would reconcile anomalies among the various experiments, Nelson said. The existence of that force, made up of both neutrinos and accelerons, will continue to fuel the expansion of the universe, she said.

Physicists have pursued evidence that could tell whether the universe will continue to expand indefinitely or come to an abrupt halt and collapse on itself in a so-called "big crunch." While the new theory doesn't prescribe a "big crunch," Nelson said, it does mean that at some point the expansion will stop getting faster.

"In our theory, eventually the neutrinos would get too far apart and become too massive to be influenced by the effect of dark energy any more, so the acceleration of the expansion would have to stop," she said. "The universe could continue to expand, but at an ever-decreasing rate."


Story Source:

The above story is based on materials provided by University Of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University Of Washington. "New Theory Links Neutrino's Slight Mass To Accelerating Universe Expansion." ScienceDaily. ScienceDaily, 28 July 2004. <www.sciencedaily.com/releases/2004/07/040728090338.htm>.
University Of Washington. (2004, July 28). New Theory Links Neutrino's Slight Mass To Accelerating Universe Expansion. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2004/07/040728090338.htm
University Of Washington. "New Theory Links Neutrino's Slight Mass To Accelerating Universe Expansion." ScienceDaily. www.sciencedaily.com/releases/2004/07/040728090338.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Space & Time News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Soyuz Spacecraft Docks With International Space Station: NASA

Soyuz Spacecraft Docks With International Space Station: NASA

AFP (Nov. 24, 2014) A Russian Soyuz spacecraft carrying Italy's first female astronaut safely docks with the International Space Station, according to NASA. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Multi-National Crew Safely Docks at Space Station

Multi-National Crew Safely Docks at Space Station

Reuters - US Online Video (Nov. 24, 2014) A Russian Soyuz rocket delivers a multi-national trio to the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Raw: Soyuz Docks With Int'l Space Station

Raw: Soyuz Docks With Int'l Space Station

AP (Nov. 23, 2014) A Russian capsule carrying three astronauts from Russia, the United States and Italy has arrived at the International Space Station. (Nov. 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins