Featured Research

from universities, journals, and other organizations

Scientists Visualise Cellular Handmaiden That Restores Shape To Proteins

Date:
August 19, 2004
Source:
Imperial College Of Science, Technology And Medicine
Summary:
A gigantic protein complex responsible for looking after bent out of shape proteins has been visualised by scientists working in Japan and the UK. The structure of the chaperonin complex of the bacteria Thermus thermophilus reveals clues about how the important molecule may do its job of folding new or damaged proteins within cells.

Structure of the chaperonin complex of the bacteria Thermus thermophilus.
Credit: Image courtesy of Imperial College Of Science, Technology And Medicine

A gigantic protein complex responsible for looking after bent out of shape proteins has been visualised by scientists working in Japan and the UK. The structure of the chaperonin complex of the bacteria Thermus thermophilus reveals clues about how the important molecule may do its job of folding new or damaged proteins within cells.

Led by Professor So Iwata of Imperial College London, the team of scientists announce their findings in this month's edition of the journal Structure (August 2004).

The complex comprises three separate parts - two identical 'cage' units lashed back to back, and a 'cap' unit that sits atop the cage, acting as a stopper. The cage contains the unwound, or denatured, protein, while the chaperonin goes about refolding its shape using the cellular energy source, ATP.

The structure of the chaperonin complex is one of the largest and most difficult solved by scientists. Each unit of the cage or cap is made up of seven separate polypeptide chains.

"It's huge," said Professor Iwata. "The cavity can accommodate even very large proteins inside. It makes the perfect environment for the protein to fold."

It is the second structure of a chaperonin complex to be reported by scientists, and is visualised at a resolution of 2.8 Angstroms. The first was published in 1997 by the group of the late Professor Paul Sigler at Yale University, USA.

Unlike the first structure, taken from the chaperonin of gut bacterium Escherichia coli, the Thermus thermophilus structure is a more natural structure revealing the irregular oval interior of the cage's subunits.

Thermus thermophilus is a highly thermophilic bacteria, first found living in deep-sea hot vents. It contains proteins thought to be very similar to those found in the energy powerhouses of plant and animal cells, the mitochondria.

Immediately, the largest users of this new knowledge are biochemists working on the protein and bioinformaticians, searching for similar molecules in other species. Human mitochondria likely use the same type of chaperonin to fold proteins says Professor Iwata. In time their structure may be used in the development of new drugs.

The team believe their structure leads them to an explanation of how the molecule works.

Properly folded proteins tuck away the elements that don't mingle well with water - a property known as hydrophobicity - inside their structure. Denatured proteins with their mis-organised shape allow normally hidden elements to display on the outside, making them appear hydrophobic.

The chaperonin cap recognises the hydrophobicity and 'kicks' the out of shape protein in to the cage for some protein folding therapy.

The folding changes in the cavity are driven by the cell's energy source, ATP. It takes just 10 seconds for a protein to properly fold in the cavity.

The scientists' next goal is to capture these cellular handmaidens in the act of folding strings of denatured protein back together again.

They already have clues as to the sorts of proteins that might be fixed by the chaperonin complex - during their work to crystallise the protein structure they identified 28 separate proteins inside the cage.

"We'd like to be the first to really know what happens, when the protein is enclosed and caught in the act," says Professor Iwata.

In molecular units known as Daltons, the structure of the native chaperonin complex weighs 700 kiloDaltons. It is so big that details of its full structure had to be deposited in two parts to the freely available structure database, Protein Data Bank. It has more than six digits of atomic coordinates, or over a million atoms in the structure mapped and plotted in 3D space.

Professor Iwata is well known for solving the structure of proteins embedded in the membrane of cells, such as the crucial photosynthesis enzyme Photosystem II, published last year in Science. The crystals of chaperonin complex were grown and prepared in Iwata's lab, and after X-ray analysis at the European synchrotron facility, all authors collaboratively solved the structure.

###

This work was funded by BBSRC and ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency.

Notes to Editors:

The research appears in the August 2004 edition of the journal Structure, see http://www.structure.org/

Title: 'Crystal Structure of the Native Chaperonin Complex from Thermus thermophilus Revealed Unexpected Asymmetry at the cis-Cavity'

Authors: Tatsuro Shimamura 1, Ayumi Koike-Takeshita 2, Ken Yokoyama 3, Ryoji Masui 4, Noriyuki Murai 2, Masasuke Yoshida 2,3, Hideki Taguchi 2,5, and So Iwata 1,3.

1 Imperial College London, UK 2 Tokyo Institute of Technology, Japan 3 ATP System Project, Japan Science and Technology Agency 4 Osaka University, Japan 5 Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency

About Imperial College London

Consistently rated in the top three UK university institutions, Imperial College London is a world leading science-based university whose reputation for excellence in teaching and research attracts students (10,000) and staff (5,000) of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and management and delivers practical solutions that enhance the quality of life and the environment - underpinned by a dynamic enterprise culture.

http://Website: www.imperial.ac.uk


Story Source:

The above story is based on materials provided by Imperial College Of Science, Technology And Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Imperial College Of Science, Technology And Medicine. "Scientists Visualise Cellular Handmaiden That Restores Shape To Proteins." ScienceDaily. ScienceDaily, 19 August 2004. <www.sciencedaily.com/releases/2004/08/040818085447.htm>.
Imperial College Of Science, Technology And Medicine. (2004, August 19). Scientists Visualise Cellular Handmaiden That Restores Shape To Proteins. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2004/08/040818085447.htm
Imperial College Of Science, Technology And Medicine. "Scientists Visualise Cellular Handmaiden That Restores Shape To Proteins." ScienceDaily. www.sciencedaily.com/releases/2004/08/040818085447.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins